SEMESTER I

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA7152</td>
<td>Statistical Methods for Engineers</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>CN7101</td>
<td>Modern Construction Materials</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CN7102</td>
<td>Construction Equipment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CN7103</td>
<td>Project Formulation and Appraisal</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CN7104</td>
<td>Quantitative Techniques in Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Elective I</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>18</td>
<td>1</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

SEMESTER II

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CN7201</td>
<td>Advanced Construction Techniques</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CN7202</td>
<td>Contract Laws and Regulations</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>CN7203</td>
<td>Construction Planning, Scheduling and Control</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CN7204</td>
<td>Computer Applications in Construction Engineering and Planning</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>Elective II</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Elective III</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>17</td>
<td>0</td>
<td>6</td>
<td>20</td>
</tr>
</tbody>
</table>

SEMESTER III

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Elective IV</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>Elective V</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Elective VI</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>9</td>
<td>0</td>
<td>14</td>
<td>17</td>
</tr>
</tbody>
</table>
SEMESTER IV

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CN7411</td>
<td>Project Work (Phase II)</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL CREDITS TO BE EARNED FOR THE AWARD OF THE DEGREE: 68

LIST OF ELECTIVES

<table>
<thead>
<tr>
<th>SL. NO.</th>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Elective I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>CN7001</td>
<td>Advanced Concrete Technology</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>CN7002</td>
<td>Shoring, Scaffolding and Formwork</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(Elective II & III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>CN7003</td>
<td>System Integration in Construction</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CN7004</td>
<td>Energy Efficient Buildings</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>CN7005</td>
<td>Construction Project Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>CN7006</td>
<td>Construction Personnel Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(Elective IV, V, VI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>CN7007</td>
<td>Quality Control and Assurance in Construction</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>CN7008</td>
<td>Economics and Finance Management in Construction</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>CN7009</td>
<td>Resource Management and Control in Construction</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>CN7010</td>
<td>Project Safety Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>CN7011</td>
<td>Management Information Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
OBJECTIVES:
- To study and understand the concepts of Statistical methods and its applications in Engineering.
- To study the effect of estimation theory, testing of hypothesis, correlation and regression, randomized design, and multivariate analysis.

UNIT I ESTIMATION THEORY 9+3

UNIT II TESTING OF HYPOTHESIS 9+3
Tests based on Normal, t, X² and F distributions for testing of means, variance and proportions – Analysis of r x c tables – Goodness of fit.

UNIT III CORRELATION AND REGRESSION 9+3
Multiple and Partial Correlation – Method of Least Squares – Plane of Regression – Properties of Residuals – Coefficient of multiple correlation – Coefficient of partial correlation – Multiple correlation with total and partial correlations – Regression and Partial correlations in terms of lower order co-efficient.

UNIT IV DESIGN OF EXPERIMENTS 9+3
Analysis of variance – One-way and two-way classifications – Completely randomized design – Randomized block design – Latin square design.

UNIT V MULTIVARIATE ANALYSIS 9+3

OUTCOME:
- On completion of this course the students will be able to solve various problems in the field of engineering employing probability and statistical methods.

REFERENCES:

OBJECTIVES:
- To study and understand the properties of modern construction materials used in construction such as special concretes, metals, composites, water proofing compounds, non weathering materials, and smart materials.
UNIT I SPECIAL CONCRETES

UNIT II METALS

UNIT III COMPOSITES
Types of Plastics – Properties & Manufacturing process – Advantages of Reinforced polymers – Types of FRP – FRP on different structural elements – Applications of FRP.

UNIT IV OTHER MATERIALS
Types and properties of Water Proofing Compounds – Types of Non-weathering Materials and its uses – Types of Flooring and Facade Materials and its application.

UNIT V SMART AND INTELLIGENT MATERIALS
Types & Differences between Smart and Intelligent Materials – Special features – Case studies showing the applications of smart & Intelligent Materials.

OUTCOME:
- On completion of this course the students will have the knowledge of modern construction materials to be used in the field.

REFERENCES:
1. ACI Report 440.2R-02, “Guide for the design and construction of externally bonded RP systems for strengthening concrete structures”, American Concrete Institute, 2002.

CN7102 CONSTRUCTION EQUIPMENT L T P C
3 0 0 3

OBJECTIVES:
- To study and understand the various types of equipments used for earthwork, tunneling, drilling, blasting, dewatering, material handling conveyors and its applications in construction projects.

UNIT I CONSTRUCTION EQUIPMENTS AND MANAGEMENT
UNIT II EQUIPMENT FOR EARTHWORK

UNIT III OTHER CONSTRUCTION EQUIPMENT

UNIT IV ASPHALT AND CONCRETE PLANTS

UNIT V MATERIALS HANDLING EQUIPMENT
Forklifts and related equipment - Portable Material Bins – Material Handling Conveyors – Material Handling Cranes- Industrial Trucks.

TOTAL : 45 PERIODS

OUTCOME:
• At the end of this course students will be able to know various types of equipments to be used in the constructions projects.

REFERENCES:
UNIT IV PROJECT FINANCING 9

UNIT V PRIVATE SECTOR PARTICIPATION 9
Private sector participation in Infrastructure Development Projects - BOT, BOLT, BOOT - Technology Transfer and Foreign Collaboration - Scope of Technology Transfer.

OUTCOME:
- On completion of this course the students will be able to know the formulations of projects, projects costing, appraisal and financing.

REFERENCES:
2. Joy P.K., Total Project Management - The Indian Context, New Delhi, Macmillan India Ltd., 1992

CN7104 QUANTITATIVE TECHNIQUES IN MANAGEMENT LT P C
3 0 0 3

OBJECTIVES:
- To study the various quantitative methods applied to the elements of management.
- To study the effect of production management, finance management, decision theory and managerial economics.

UNIT I OPERATIONS RESEARCH 9
Introduction to Operations Research - Linear Programming – Graphical and Simplex Methods, Duality and Post – Optimality Analysis – Transportation and Assignment Problems.

UNIT II PRODUCTION MANAGEMENT 9

UNIT III FINANCIAL MANAGEMENT 9

UNIT IV DECISION THEORY 9

UNIT V MANAGERIAL ECONOMICS 9

OUTCOME:
- On completion of this course the students will be able to know operations research, production management, financial management and cost concepts.

TOTAL : 45 PERIODS
REFERENCES:

CN7201 ADVANCED CONSTRUCTION TECHNIQUES

<table>
<thead>
<tr>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 0 0 3</td>
</tr>
</tbody>
</table>

OBJECTIVES:
- To study and understand the latest construction techniques applied to engineering construction for sub structure, super structure, special structures, rehabilitation and strengthening techniques and demolition techniques.

UNIT I SUB STRUCTURE CONSTRUCTION
- Box jacking
- Pipe jacking
- Under water construction of diaphragm walls and basement
- Tunneling techniques
- Piling techniques
- Driving well and caisson
- Sinking cofferdam
- Cable anchoring and grouting
- Driving diaphragm walls
- Sheet piles
- Laying operations for built up offshore system
- Shoring for deep cutting
- Large reservoir construction
- Well points
- Dewatering for underground open excavation.

UNIT II SUPER STRUCTURE CONSTRUCTION FOR BUILDINGS
- Vacuum dewatering of concrete flooring
- Concrete paving technology
- Techniques of construction for continuous concreting operation in tall buildings of various shapes and varying sections
- Erection techniques of tall structures
- Large span structures
- Launching techniques for heavy decks
- In-situ prestressing in high rise structures
- Post tensioning of slab
- Aerial transporting
- Handling and erecting lightweight components on tall structures.

UNIT III CONSTRUCTION OF SPECIAL STRUCTURES
- Erection of lattice towers
- Rigging of transmission line structures
- Construction sequence in cooling towers
- Silos, chimney, sky scrapers
- Bow string bridges, Cable stayed bridges
- Launching and pushing of box decks
- Construction of jetties and break water structures
- Construction sequence and methods in domes
- Support structure for heavy equipment and machinery in heavy industries
- Erection of articulated structures and space decks.

UNIT IV REHABILITATION AND STRENGTHENING TECHNIQUES
- Seismic retrofitting
- Strengthening of beams
- Strengthening of columns
- Strengthening of slab
- Strengthening of masonry wall
- Protection methods of structures
- Mud jacking and grouting for foundation
- Micro piling and underpinning for strengthening floor and shallow profile
- Sub grade water proofing
- Soil Stabilization techniques.

UNIT V DEMOLITION
- Demolition Techniques
- Demolition by Machines
- Demolition by Explosives
- Advanced techniques using Robotic Machines
- Demolition Sequence
- Dismantling Techniques
- Safety precaution in Demolition and Dismantling.

TOTAL : 45 PERIODS
OUTCOME:
• On completion of this course the students will know the modern construction techniques to be used in the construction of buildings and special structures and also rehabilitation and strengthening techniques and demolition.

REFERENCES:
• Jerry Irvine, Advanced Construction Techniques, CA Rocketr, 1984

CN7202 CONTRACT LAWS AND REGULATIONS

OBJECTIVES:
• To study the various types of construction contracts and their legal aspects and provisions.
• To study the use of tenders, arbitration, legal requirement, and labour regulations.

UNIT I CONSTRUCTION CONTRACTS

UNIT II TENDERS

UNIT III ARBITRATION

UNIT IV LEGAL REQUIREMENTS

UNIT V LABOUR REGULATIONS

OUTCOME:
• On completion of this course the students will know different types of contracts in construction, arbitration and legal aspect and its provisions.

REFERENCES:
• Gajaria G.T., Laws Relating to Building and Engineering Contracts in India,

CN7203 CONSTRUCTION PLANNING, SCHEDULING AND CONTROL L T P C
3 0 0 3

OBJECTIVES:
• To study and understand the concept of planning, scheduling, cost and quality control, safety during construction, organization and use of project information necessary for construction project.

UNIT I CONSTRUCTION PLANNING

UNIT II SCHEDULING PROCEDURES AND TECHNIQUES

UNIT III COST CONTROL, MONITORING AND ACCOUNTING

UNIT IV QUALITY CONTROL AND SAFETY DURING CONSTRUCTION

UNIT V ORGANIZATION AND USE OF PROJECT INFORMATION

TOTAL : 45 PERIODS

OUTCOME:
• On completion of this course the students will know the development of construction planning, scheduling procedure and controls.

REFERENCES:

CN7204 COMPUTER APPLICATIONS IN CONSTRUCTION

OBJECTIVES:
- To study and understand the hardware and software requirements of computer, programming, optimization techniques, inventory models and scheduling techniques applied to construction engineering.

UNIT I
INTRODUCTION
Overview of IT Applications in Construction – Construction process – Computerization in Construction – Computer aided Cost Estimation – Developing application with database software.

UNIT II
OPTIMIZATION TECHNIQUES
Linear, Dynamic and Integer Programming - Branch and Bound Techniques – Application to Production Scheduling, Equipment Replacement, Material Transportation and Work Assignment Problems – Software applications.

UNIT III
INVENTORY MODELS
Deterministic and Probabilistic Inventory Models - Software applications.

UNIT IV
SCHEDULING APPLICATION
PERT and CPM - Advanced planning and scheduling concepts – Computer applications – Case study.

UNIT V
OTHER PROBLEMS
Sequencing problems – Simulation – Enterprises – Introduction to ERP systems.

OUTCOME:
- On completion of this course the students will know the computer applications in construction, different optimization techniques and sequencing problems.

REFERENCES:

CN7211 ADVANCED CONSTRUCTION ENGINEERING AND COMPUTING TECHNIQUES LABORATORY

OBJECTIVES:
- This course provides a thorough knowledge of material selection through the material testing based on specification.
LIST OF EXPERIMENTS
1. Mix design of concrete as per IS, ACI & BS methods for high performance concrete.
3. Effect of minerals and chemical admixtures in concrete at fresh and hardened state with relevance to workability, strength and durability.
4. NDT on hardened concrete - UPV, Rebound hammer and core test.
5. Permeability tests on hardened concrete – Demonstration

TOTAL : 30 PERIODS

OUTCOMES:
- On completion of this laboratory course students will be able to test the concrete mixes designed as per IS, ACI and BS methods.
- Students will also be able to know various tests on hardened concrete.

(B) ADVANCED COMPUTING TECHNIQUES LABORATORY

OBJECTIVES:
- This course gives an exposure to students in utilizing the sophisticated spread sheets programs, estimation software and other package programs.

LIST OF EXPERIMENTS
1. Quantity takeoff, Preparation and delivery of the bid or proposal of an engineering construction project.
2. Design of a simple equipment information system for a construction project.
3. Scheduling of a small construction project using Primavera scheduling systems including reports and tracking.
4. Scheduling of a small construction project using tools like MS project scheduling systems including reports and tracking.
5. Simulation models for project risk analysis.

TOTAL : 30 PERIODS

OUTCOME:
- On completion of this laboratory course the students will be able to do the scheduling of constructions projects using tools primavera and MS projects.

CN7311 PRACTICAL TRAINING (4 Weeks) L T P C
- - - 1

OBJECTIVES:
- To train the students in the field work so as to have a firsthand knowledge of practical problems related to Construction Management in carrying out engineering tasks.
- To develop skills in facing and solving the problems experiencing in the field.

SYLLABUS:
The students individually undertake training in reputed engineering companies doing construction during the summer vacation for a specified duration of four weeks. At the end of training, a detailed report on the work done should be submitted within ten days from the commencement of the semester. The students will be evaluated through a viva-voce examination by a team of internal staff.
CN7312 PROJECT WORK (PHASE I) L T P C 0 0 12 6

OBJECTIVES:
- To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature.
- To develop the methodology to solve the identified problem.
- To train the students in preparing project reports and to face reviews and viva-voce examination.

SYLLABUS:
The student individually works on a specific topic approved by the head of the division under the guidance of a faculty member who is familiar in this area of interest. The student can select any topic which is relevant to the area of construction engineering and management. The topic may be theoretical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

OUTCOME:
- At the end of the course the students will have a clear idea of his/her area of work and they are in a position to carry out the remaining phase II work in a systematic way.

TOTAL: 180 PERIODS

CN7313 SEMINAR L T P C 0 0 2 1

OBJECTIVES:
- To work on a specific technical topic in Construction Engineering and Management in order to acquire the skills of oral presentation.
- To acquire technical writing abilities for seminars and conferences.

SYLLABUS:
The students will work for two hours per week guided by a group of staff members. They will be asked to talk on any topic of their choice related to construction engineering and management and to engage in dialogue with the audience. A brief copy of their talk also should be submitted. Similarly, the students will have to present a seminar of not less than fifteen minutes and not more than thirty minutes on the technical topic. They will also answer the queries on the topic. The students as audience also should interact. Evaluation will be based on the technical presentation and the report and also on the interaction during the seminar.

TOTAL: 30 PERIODS

CN7411 PROJECT WORK (PHASE II) L T P C 0 0 24 12

OBJECTIVES:
- To solve the identified problem based on the formulated methodology.
- To develop skills to analyze and discuss the test results, and make conclusions.

SYLLABUS:
The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated through based on the report and the viva-voce examination by a panel of examiners including one external examiner.

TOTAL: 360 PERIODS
OUTCOME:
- On completion of the project work students will be in a position to take up any challenging practical problems in the field of construction engineering and management and find better solutions to it.

CN7001 ADVANCED CONCRETE TECHNOLOGY

OBJECTIVES:
- To study the properties of concrete making materials, tests, mix design, special concretes and various methods for making concrete.

UNIT I CONCRETE MAKING MATERIALS

UNIT II TESTS ON CONCRETE

UNIT III MIX DESIGN

UNIT IV SPECIAL CONCRETE

UNIT V CONCRETING METHODS

OUTCOME:
- On completion of this course the students will know various tests on fresh, hardened concrete, special concrete and the methods of manufacturing of concrete.

REFERENCES:

CN7002 SHORING, SCAFFOLDING AND FORMWORK

OBJECTIVES:
- To study and understand the overall and detailed planning of formwork, plant and site equipment.
- To understand the Design and erection of forms for various elements such as slabs, beams, columns, walls, shells and tunnels.
- To know the latest methods of form construction.
UNIT I PLANNING, SITE EQUIPMENT & PLANT FOR FORM WORK 9
Introduction - Forms for foundations, columns, beams walls etc., General objectives of formwork building - Planning for safety - Development of a Basic System - Key Areas of cost reduction - Planning examples. Overall Planning - Detailed planning - Standard units - Corner units - Pass units - Calculation of labour constants - Formwork hours - Labour Requirement - Overall programme - Detailed programme - Costing - Planning crane arrangements - Site layout plan - Transporting plant - Formwork beams - Scaffold frames - Framed panel formwork - Formwork accessories.

UNIT II MATERIALS ACCESSORIES PROPRIETARY PRODUCTS & PRESSURES 9

UNIT III DESIGN OF FORMS AND SHORES 9
Basic simplification - Beam formulae - Allowable stresses - Deflection, Bending - Lateral stability - Shear, Bearing - Design of Wall forms - Slab forms - Beam forms - Column forms - Examples in each. Simple wood stresses - Slenderness ratio - Allowable load vs length behaviour of wood shores - Form lining Design Tables for Wall formwork - Slab Formwork - Column Formwork - Slab props - Stacking Towers - Free standing and restrained - Rosett Shoring - Shoring Tower - Heavy Duty props.

UNIT IV BUILDING AND ERECTING THE FORM WORK 9
Carpentry Shop and job mill - Forms for Footings - Wall footings - Column footings - Sloped footing forms - Strap footing - Stepped footing - Slab form systems - Sky deck and Multiflex - Customized slab table - Standard Table module forms - Swivel head and uniportal head - Assembly sequence - Cycling with lifting fork - Moving with table trolley and table prop. Various causes of failures - ACI - Design deficiencies - Permitted and gradual irregularities.

UNIT V FORMS FOR DOMES AND TUNNELS, SLIP FORMS AND SCAFFOLDS 9
Hemispherical, Parabolic, Translational shells - Typical barrel vaults Folded plate roof details - Forms for Thin Shell roof slabs design considerations - Building the forms - Placing concrete - Form removed -Strength requirements -Tunnel forming components - Curb forms invert forms - Arch forms - Concrete placement methods - Cut and cover construction - Bulk head method - Pressures on tunnels - Continuous Advancing Slope method - Form construction - Shafts. Slip Forms - Principles -Types - advantages - Functions of various components - Planning -Desirable characteristics of concrete - Common problems faced - Safety in slip forms special structures built with slip form Technique - Types of scaffolds - Putlog and independent scaffold -Single pole scaffolds - Truss suspended - Gantry and system scaffolds.

TOTAL: 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know the detailed planning of framework, design of forms and erection of form work.

REFERENCES:
2. Hurd, M.K., Formwork for Concrete, Special Publication No.4, American Concrete Institute, Detroit, 1996
OBJECTIVES:
- To study and understand the construction system integration, environmental factors, services, maintenance and safety systems.

UNIT I STRUCTURAL INTEGRATION

UNIT II ENVIRONMENTAL FACTORS

UNIT III SERVICES
Plumbing – Electricity – Vertical circulation and their interaction – HVAC.

UNIT IV MAINTENANCE
Component longevity in terms of operation performance and resistance to deleterious forces - Planning systems for least maintenance materials and construction – access for maintenance – Feasibility for replacement of damaged components – equal life elemental design – maintenance free exposed and finished surfaces.

UNIT V SAFETY
Ability of systems to protect fire – Preventive systems – fire escape system design – Planning for pollution free construction environmental – Hazard free Construction execution.

OUTCOME:
- On completion of this course the students will be able to know various Structural systems, Services, Safety and Maintenance requirements in construction.

REFERENCES:

OBJECTIVES:
- To study the design of energy efficient buildings which balances all aspects of energy, lighting, space conditioning and ventilation by providing a mix of passive solar design strategies and to learn the use of materials with low embodied energy.

UNIT I INTRODUCTION
UNIT II PASSIVE SOLAR HEATING AND COOLING

UNIT III DAYLIGHTING AND ELECTRICAL LIGHTING

UNIT IV HEAT CONTROL AND VENTILATION

UNIT V DESIGN FOR CLIMATIC ZONES

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know various components which makes the building energy efficient such as lighting, space conditioning, heat control and energy efficient.

REFERENCES:
OBJECTIVES:
- To study the various management techniques for successful completion of construction projects.
- To study the effect of management for project organization, design of construction process, labour, material and equipment utilization, and cost estimation.

UNIT I THE OWNERS’ PERSPECTIVE 9

UNIT II ORGANIZING FOR PROJECT MANAGEMENT 9

UNIT III DESIGN AND CONSTRUCTION PROCESS 9

UNIT IV LABOUR, MATERIAL AND EQUIPMENT UTILIZATION 9

UNIT V COST ESTIMATION 9

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know the modern trends in project management viz. design, construction, resource utilisation and cost estimation.

REFERENCES:
CN7006 CONSTRUCTION PERSONNEL MANAGEMENT L T P C
3 0 0 3

OBJECTIVES:
- To study the various aspects of manpower management such as man power planning, organization, human relations, welfare and development methods in construction.

UNIT I MANPOWER PLANNING 9

UNIT II ORGANISATION 9

UNIT III HUMAN RELATIONS AND ORGANISATIONAL BEHAVIOUR 9
Basic individual psychology – Approaches to job design and job redesign – Self managing work teams – Intergroup – Conflict in organizations – Leadership-Engineer as Manager – al aspects of decision making – Significance of human relation and organizational – Individual in organization – Motivation – Personality and creativity – Group dynamics, Team working – Communication and negotiation skills.

UNIT IV WELFARE MEASURES 9

UNIT V MANAGEMENT AND DEVELOPMENT METHODS 9

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will know various processes in manpower planning, organizational and welfare measures.

REFERENCES:
UNIT I QUALITY MANAGEMENT 9
Introduction – Definitions and objectives – Factors influencing construction quality –
Responsibilities and authority – Quality plan – Quality Management Guidelines – Quality circles.

UNIT II QUALITY SYSTEMS 9
Introduction - Quality system standard – ISO 9000 family of standards – Requirements – Preparing
Quality System Documents – Quality related training – Implementing a Quality system – Third
party Certification.

UNIT III QUALITY PLANNING 9
Quality Policy, Objectives and methods in Construction industry - Consumers satisfaction,
Ergonomics – Time of Completion - Statistical tolerance – Taguchi’s concept of quality – Codes
and Standards – Documents – Contract and construction programming – Inspection procedures -
Processes and products – Total QA / QC programme and cost implication.

UNIT IV QUALITY ASSURANCE AND CONTROL 9
Objectives – Regularity agent, owner, design, contract and construction oriented objectives,
methods – Techniques and needs of QA/QC – Different aspects of quality – Appraisals, Factors
influencing construction quality – Critical, major failure aspects and failure mode analysis, –
Stability methods and tools, optimum design – Reliability testing, reliability coefficient and reliability
prediction.

UNIT V QUALITY IMPROVEMENT TECHNIQUES 9
Selection of new materials – Influence of drawings, detailing, specification, standardization – Bid
preparation – Construction activity, environmental safety, social and environmental factors –
Natural causes and speed of construction – Life cycle costing – Value engineering and value
analysis.

OUTCOME:
• On completion of this course the students will be able to know the quality control aspects in
 planning, systems, management, assurance and improvement techniques.

REFERENCES:
 Nostrand, 1997
5. Kwaku.A., Tena, Jose, M. Guevara, Fundamentals of Construction Management and
6. Steven McCabe, Quality Improvement Techniques in Construction, Addison Wesley Longman

CN7008 ECONOMICS AND FINANCE MANAGEMENT IN CONSTRUCTION L T P C
3 0 0 3

OBJECTIVES:
• To study the concepts of Construction Economic and Finance such as comparing alternatives
 proposals, evaluating alternative investments, management of funds, and management of
 accounting.

UNIT I BASIC PRINCIPLES 9
Time Value of Money – Cash Flow diagram – Nominal and effective interest- continuous interest .
Single Payment Compound Amount Factor (P/F,F/P) – Uniform series of Payments
(F/A,A/F,F/P,A/P)– Problem time zero (PTZ)- equation time zero (ETZ). Constant increment to
periodic payments – Arithmetic Gradient(G), Geometric Gradient (C).
UNIT II COMPARING ALTERNATIVES PROPOSALS 9
Comparing alternatives- Present Worth Analysis, Annual Worth Analysis, Future Worth Analysis, Rate of Return Analysis (ROR) and Incremental Rate of Return (IROR) Analysis, Benefit/Cost Analysis, Break Even Analysis.

UNIT III EVALUATING ALTERNATIVE INVESTMENTS 9
Real Estate - Investment Property, Equipment Replace Analysis, Depreciation – Tax before and after depreciation – Value Added Tax (VAT) – Inflation.

UNIT IV FUNDS MANAGEMENT 9

UNIT V FUNDAMENTALS OF MANAGEMENT ACCOUNTING 9

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know the concepts in economics and finance in constructions.

REFERENCES:

CN7009 RESOURCE MANAGEMENT AND CONTROL IN CONSTRUCTION L T P C
3 0 0 3

OBJECTIVES:
- To study the management and control of various resources involved in construction.
- To study the effect of resource planning, labour management, material and equipment, time management, and resource allocation and resource leveling in construction.

UNIT I RESOURCE PLANNING 9
Resource Planning, Procurement, Identification, Personnel, Planning for material, Labour, time schedule and cost control, Types of resources, manpower, Equipment, Material, Money, Time.

UNIT II LABOUR MANAGEMENT 9
Systems approach, Characteristics of resources, Utilization, measurement of actual resources required, Tools for measurement of resources, Labour, Classes of Labour, Cost of Labour, Labour schedule, optimum use Labour.

UNIT III MATERIALS AND EQUIPMENT 9
Material: Time of purchase, quantity of material, sources, Transportation, Delivery and Distribution.

Equipment: Planning and selecting by optimistic choice with respect to cost, Time, Source and handling.
UNIT IV TIME MANAGEMENT
Personnel time, Management and planning, managing time on the project, forecasting the future, Critical path measuring the changes and their effects – Cash flow and cost control.

UNIT V RESOURCE ALLOCATION AND LEVELLING

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know resource planning, management, allocation and resource leveling in construction.

REFERENCES:

CN7010 PROJECT SAFETY MANAGEMENT

OBJECTIVES:
- To study and understand the various safety concepts and requirements applied to construction projects.
- To study the of construction accidents, safety programmes, contractual obligations, and design for safety.

UNIT I CONSTRUCTION ACCIDENTS

UNIT II SAFETY PROGRAMMES

UNIT III CONTRACTUAL OBLIGATIONS
Safety in Construction Contracts – Substance Abuse – Safety Record Keeping.

UNIT IV DESIGNING FOR SAFETY

UNIT V OWNERS' AND DESIGNERS' OUTLOOK
Owner’s responsibility for safety – Owner preparedness – Role of designer in ensuring safety – Safety clause in design document.

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know various constructions safety concepts.
REFERENCES:

CN7011 MANAGEMENT INFORMATION SYSTEMS

OBJECTIVES:

- To study the concepts of information systems and their applications, system development and information systems, implementation and control, and system audit.

UNIT I INTRODUCTION

UNIT II SYSTEM DEVELOPMENT

UNIT III INFORMATION SYSTEMS

UNIT IV IMPLEMENTATION AND CONTROL

UNIT V SYSTEM AUDIT

TOTAL : 45 PERIODS

OUTCOME:
- On completion of this course the students will be able to know the various applications of information systems in management.

REFERENCES: