Chemical Engineering  Review Article

Technology

These are not the final page numbers! \~\

Please check the marked (M) text passages carefully.

Johnsi Maria Singaraj’
Shalini Vincent Janet Mary
Asha’

Poojitha Bhaskara®
Supreetha Dhamodharan?®
Oviyan Selvamani®
Nagarasampatti Palani
Kavitha®

Balasubramanian
Natesan'*

A Detailed Discourse on the Epistemology
of Lithium-Sulfur Batteries

The architecture of lithium-sulfur (Li-S) batteries can hold five times more charge
capacity compared to Li-ion batteries. This review emphasizes the recent research
findings on the desired loading of sulfur, the electrolyte-to-sulfur ratio, and a
detailed view of the polysulfide shuttling effect. Problems with electrolyte stability
are also discussed as well as the potential remedies they provided in various
systems, as Li-S batteries have great potential to surmount these critical issues by
understanding the mechanism. Future scopes of Li-S batteries can be progressively
attained by optimizing the pore structure, designing highly conductive and
strong sulfur confinement systems, and thereby pairing with anode materials
to explore the possibility of innovative components for commercializing Li-S

batteries.
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1 Introduction

Universal anxiety about climate change and the ever-depleting
fossil fuels has sparked the surfacing of green energy alterna-
tives. With a surge in demand for energy, in this persistently
evolving sphere, we look towards sustainable energy sources.
One facet of this goal is to unravel solutions for energy storage
and the subsequent synthesis of batteries. Among the available
methods of energy storage, rechargeable batteries are one of the
upcoming technologies, on account of their eco-friendly
nature, high conversion efficiency, and flexibility. The contem-
porary and commonly used batteries are lithium-ion batteries,
owing to their long cycle life; they are used in products such as
wireless headphones, handheld power tools, and electric
vehicles. The rechargeable batteries are an exciting substitute,
in contrast to lithium-ion (Li-ion) batteries, for the next gener-
ation to be in tune with the expanding energy demand. These
batteries are known to have an almost five times higher energy
density than Li-ion batteries and are also cheaper and lighter in
comparison [1].

The Ragone plot in Fig. 1 is a tool to compare various storage
systems for energy, their power, and energy densities. The plot
helps to determine the best Li-ion system with maximum effi-
ciency and optimal discharge energy. Batteries have drawbacks
such as limited lifetime and expensive maintenance, as seen
from the plot. Lithium batteries, however, have some disadvan-
tages such as a lower energy capacity compared to combustible
fuels (e.g., petrol provides 13kWhkg™', natural gas provides
15kWh kg™, hydrogen provides 34 kWhkg™') and a prolonged
recharging time. They are constrained to smaller vehicles with
low mileage demands.
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1.1 Recent Progress on New Materials

The third-generation rechargeable batteries consider the lithi-
um-sulfur (Li-S) battery as a promising candidate for commer-
cial purposes. As the next frontier, sustainable Li-S cells have
been attractive due to their high theoretical capacity
(1675mAhg™) at a safe operating voltage (1.7-2.8 V) and the
abundantly available, environmentally friendly sulfur with low
cost. Although it has many advantages, the cycling stability is
very poor due to the dendrite formation on Li-metal and deple-
tion of the electrolyte. This leads to degradation at the anode
surface with loss of active material and dissolution of lithium
polysulfides (LiPS) in the electrolyte medium (shuttle effect)
[2].

The recent improvements in designing electric vehicles
require a cathode material with cell configuration and fast con-
sumption of both the electrolyte and the active material. Most
importantly, the cell parameters are designed according to the
sulfur loading (mg cm™), sulfur content (wt%), and electro-
lyte-to-sulfur ratio (ML mg™") to achieve improvements in the
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The Li-S battery falls under the rechargeable batter-
- ies with remarkable specific energy and energy den-
QD 300 sity. It has lithium as the anode and sulfur as the
B cathode. The lower atomic weight of the elements
5 involved facilitates a wider range of applications
E 200 — o due to the reduced overall weight of the battery.
o The batteries carry the additional advantage of
% reduced cost. The history of Li-S batteries, the
:c). 100 developments in the field, and the never-ending
extensive research on the topic have come a long
way, as shown in Fig.2, which describes the ad-
vancements in research on Li-S batteries. In 1962,
0 — Danuta Herbert and Juliuz Ulam patented a battery
I I ] I | that contained lithium as its anode and sulfur as its
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Figure 1. Ragone plot comparing multiple energy systems.

rate of cell performance with respect to cycle life, high capacity,
energy density, and capacity retention. Recently, the research
trend on Li-S addresses electrode modification and the design
of sulfur-based cathode composites. Wu and Chung [3] devised
a hot-pressed electrospun cathode with high loading of sulfur
for a lean electrolyte cell. This design realizes low-weight con-
ductive carbon, which provides a porous space for hosting the
active material, attaining 8 mgcm™, and a high content of
sulfur of 73wt %. And they reported that the adoption of this
method attains the high cell performance of 740 mAh g™', with
outstanding rate performance of a prolonged cycle life of
200 cycles at 0.1-0.3 C.

The multifunctional self-supporting carbon nanobelt was in-
troduced by the ion-beam sputtering deposition method.
Hence, the biomass-derived hyphae carbon could enhance the
loading to 4.6mgcm™ sulfur, which can deliver a retention
capacity of 77% for 400 cycles at 0.5C. As an evidence of
cycling performance, Li-S batteries have achieved a remarkable
areal capacity of 9.8mAhcm™ at 0.1C, and the capacity of
7.3 mAh cm™ was maintained even after 60 cycles. This novel
design strategy facilitates the redox kinetics of new sulfur
species for long-life span Li-S batteries [4].

Recently, researchers have started to investigate the electro-
chemical characteristics of practical sulfur cathodes to achieve
the high loading of sulfur of over 5mgcm™, a sufficient sulfur
content of 60wt %, and a low electrolyte-to-sulfur ratio of
3-11uLmg™. Cheng and Chung [5] revealed that chemical
plating of a nickel nanoshell on the surface of sulfur particles
traps the liquid-state active material and improves the electro-
chemical characteristics. llpls checkM Electroless nickel-plated
sulfur nanocomposites showed improved Li-S cell performance
by their high sulfur content of 74wt % and high loading of
sulfur at 14 mgcm™, with a low electrolyte-to-sulfur ratio of
7uLmg . Therefore, this cathode attains high areal capacities
of 7-14mAhcm™ and energy densities of 13-28 mWh cm™,
greater than those of commercial Li-ion battery cathodes
(2-4 mAh cm ™ and 10-14 mWh cm ™).
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cathode, both being employed in dry cells and
storage batteries [6]. The electrolytes of choice were
iodide, alkaline earth perchlorate, bromide, sulfo-
namide, or chlorate being dissolved in 1°, 2°, or 3°
saturated aliphatic amine. An additional compo-
nent to the existing topic was introduced in 1966 when Herbert
patented an electrolyte that distinguished Li salts dissolved in
amyl, butyl, or propyl amine as its components [7].

The solvent to be used in combination was found to be iso-
propyl amine. In the same year, Rao [8] patented high-energy
density metal-sulfur batteries. The electrolyte was examined to
contain ammonium/light metal ions as cations and tetrafluoro-
borate or tetrachloroaluminate as anions. The battery exhibited
a voltage ranging from 2.5 to 1.1 V. The standardized usage of
aqueous electrolytes was challenged in 1970 by the findings of
Moss and Nole [9] when they introduced and patented non-
aqueous electrolytes. Technological improvements in the later
years produced organic solvents such as propylene carbonate
(PC), dimethyl sulfoxide (DMSO), and dimethylformamide
(DME), yielding a battery voltage of 2.3-2.5V [10,11]. The
1980s marked the introduction of rechargeable Li-S batteries
employing ethers with 1,3-dioxolane (DOL) as the electrolyte
solvent. In the following years, research regarding Li-S batteries
was stunted due to the absence of reliable results, which subse-
quently hindered any progress in the application and advance-
ment of the battery. A modification was brought to the status
of Li-S batteries in 2009 when Linda F. Nazar published her
work in Nature Materials [12]. This aided in attracting the
interest of researchers towards the field of Li-S batteries and,
hence, the topic was revisited. The growth in the development
of Li-S batteries was proven by the 2500 papers that were
published and 70 000 citations of the same, as demonstrated by
the data on the Web of Science.

With their advantages, the Li-S batteries also brought the
main cause of degradation and the greatest disadvantage:
polysulfide shuttling. This is the phenomenon where LiPS
(Li,S,, where the value of x ranges from 4 to 8) are formed in
the cathode and proceed to leak. Due to their high solubility,
they diffuse to the anode and, upon reaction, become short-
chain polysulfides. Upon migration to the cathode, they get
converted to long-chain polysulfides, thus leading to their dep-
osition on the cathode. This causes low coulombic efficiency,
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Figure 2. Progress in research on Li-S batteries.

lithium corrosion, and low battery life. This phenomenon was
a barrier to the commercial application of Li-S batteries and
kept numerous researchers busy to find a solution that over-
comes the problem. Xu et al. [13] put forth a statement saying
that polysulfides are beneficial for cell life. They further explain
in Advanced Energy Materials how the issue of polysulfide
shuttling can be contradicted by introducing electrolytes con-
taining polysulfides, which leads to the precipitation and disso-
lution of Li-S polysulfides at the electrode interface. The most
outstanding progress in the story of Li-S batteries is the identi-
fication of a particular electrolyte formation suitable for Li-S
batteries [13].

The solvent-salt combinations were found to be sulfone
based [14-16], DMSO [17-19], DMF [20], 1,2-dimethoxy-
ethane (DME) [21], and polyethylene oxide (PEO) polymer
electrolytes [22-26]. A solvent found to be widely applied is
DOL [27]. Electrolytes can also be used in solid states, e.g.
LiS-SiS, [28], LiS-P,Ss [29], and thio-lithium superionic con-
ductor (LISICON) [30].

Another finding to battle polysulfide shuttling was the addi-
tion of additives such as LiNO; to the electrolyte to safeguard
the Li anode species. It was proven via usage of an ether solvent
that aids in the creation of a solid electrolyte interface (SEI),
thus preventing any parasitic reaction between Li and LiPS
[31]. After extensive research, the “four-electrode Swagelok
cell” was used to enable in situ cyclic voltammetry for quantita-
tive and qualitative analysis. It reveals the numbers of soluble
polysulfides as far as quantitative measurements are concerned,
and the sulfur discharge mechanism was studied for qualitative
measurements [32-34]. Numerous researchers studied the per-
formance and characteristics of the battery. Barchasz et al. [35]
studied the discharge mechanism using high-performance lig-
uid chromatography (HPLC), electron paramagnetic resonance
(EPR) spectroscopy, and UV-Vis spectroscopy as characteriza-
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tion tools. Gao et al. [36] studied the influence of the electrolyte
composition.

The results displayed that the solvents affected the Li-S elec-
trochemical performance more than the salts. As another ob-
servation it was found that soluble polysulfides remain oxidized
in ethereal solvents and get completely reduced in low-viscosity
solvents. The performance of the battery and its characteristics
can be predicted innovatively through modeling, which has
emerged as a new research line. The years 2004 and 2008
marked the participation of Mikhaylik and Akridge [37] and
Kumaresan et al. [38] in developing models of Li-S batteries to
predict the cell life and state of health. Recent years have
recorded appreciable advancements in Li-S batteries. Although
modifications have been brought by many researchers, com-
mercial application of the battery is still to be dealt with. In
2020, Bhargav et al. [39] identified critical parameters for
achieving commercial acceptance. The critical parameters in-
clude a sulfur loading exceeding 5 mg cm™ along with a carbon
content of less than 5% plus an electrolyte-sulfur composition
ratio lower than 5uL mg ™', and an electrolyte-to-capacity ratio
lower than 5uL mAh™ can promote the batteries for commer-
cial application [39,40]. In 2021, researchers invented a sugar-
based anode additive that prevents polysulfide shuttling, and
1000 charge cycles with a capacity of 700mAhg™ were ob-
served [41]. In 2022, researchers from Monash University, Aus-
tralia, found an interlayer to restrict polysulfide migration and
enable ion transfer to decrease the charge-discharge time [42].

In the same year, researchers used aramid nanofibers de-
signed into networks like a cell membrane structure to hinder
the growth of dendrites. The phenomenon of ion selectivity
tackled polysulfide shuttling by confining minute channels into
the structure plus an electric charge [43].

The most recent finding was brought about by professors at
Drexel University, in the form of a prototype of a Li-S battery
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containing monoclinic gamma phase sulfur that did not
degrade over 4000 cycles [44]. Constant and persistent research
is being performed on enhancing the properties of Li-S batter-
ies, overcoming the disadvantages and making them commer-
cially applicable.

3  Mechanism of Li-S Batteries

Li-S batteries employ lithium as the anode and sulfur as the
cathode, involving a discharge mechanism followed by a charg-
ing mechanism, and the reactions occurring at the electrodes
can be seen in Fig. 3.

Based on the Li-S redox process, the entire electrochemical
reaction is

16Li + Sg = 8Li,S (1)
Reaction at the anode [41]: s this [45]?

Li»Lit 4+e )
Reaction at the cathode:

2LiT 4+ S+ 2e” = Li,S (3)

Lithium ions from the anode react with sulfur to generate
Li,S as the end result. This is also known as the reduction of
sulfur to Li,S; however the entire reaction process comprises
several distinct stages. During the discharge mechanism, lithi-
um ions disintegrate from the negative electrode (anode), then
diffuse via the electrolyte and migrate to the positive electrode
(cathode).

Sg 4+ 2e~ 4 2LiT — Li,Sg (4)
3Li,Sg 4 2e~ 4 2LiT — 4Li, S, (5)
e e

ccp

S CATHODE

SEPARATOR

L bischarsine |

@ Li* Sulfur @ Carbon

Figure 3. Mechanism of Li-S batteries.
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4
2Li,S¢ + 2e + 2LiT —3Li,S, (6)
2LiS, + 4e” + 4LiT — 4Li,S, (7)
414,S, + 8¢~ + 8Li" — 8Li,S (8)

Sulfur initially gets reduced to form LiPS (Li,S,, 1 < x < 8)
[46], a rather threatening compound that impacts the perfor-
mance of the battery and the overall functioning. A few hy-
potheses on the discharge mechanism show that LiPS are pro-
duced gradually after the first dissolution of the solid-state (Sg)
elemental sulfur. Organic solvents are the most commonly used
electrolytes, wherein LiPS of higher order (Li,S,, 4 < x < 8) get
soluble, whereas intermediate products like lower-order LiPS
are insoluble in the electrolyte. As the cell discharges, sulfur is
reduced in organic solvents as various chemical species such as
polysulfide anions and radicals (Sg_, S%_, Sé‘, Sé‘, Si_, Sg_,
§3, $27, S3°, S5 °, and S™°), which weakens the polysulfide
chain and results in the formation of lithium sulfide [47].

During the charge cycle, oxidation of sulfur occurs at the
cathode and, upon charging, the Li* ions move towards the
anode. At the anode, the reduction of Li-ions takes place. The
dissolution of Li" ions and the following electrodeposition
gradually promote unpredictable development of the SEIL This
creates active sites for the occurrence of nucleation and enables
the dendritic development of lithium. Short circuits occur in
Li-S batteries due to the expansion of lithium dendrites, which
finally causes the death of the battery itself [48]. Also, the poly-
sulfide gets deposited on the electrodes and restricts the move-
ment of Li" ions, thus negatively affecting the functioning of
the battery.

4  Traits of Li-S Batteries

Certain major and most promising traits of Li-S batteries are
their elevated energy density, low cost, and the bountiful nature
of sulfur material. The edge over others listed is
possible when Li-S batteries use sulfur in its ele-
mental form as active material in the cathode and
allow the sulfur to proceed towards the theoretical
capacity with minimum process cost [49-57].
Sulfur is the 17th most plentiful element in the
Earth’s crust. The melting point of sulfur is
112.8 °C (rhombic) and 119 °C (monoclinic); it has
a gravity density of 2.07gcm™ (rhombic) and
1.957gcm™ (monoclinic) at 20°C and undergoes
sublimation effortlessly. It is a fragile, odorless, pale
yellow solid, insoluble in H,O but soluble in CS,
[54]. A multitude of issues arise concerning the
sulfur cathode in batteries as it is an insulator of
electricity: a higher quantity of carbon material is
required for utilization of the active material
[57,58]. The major issue with lithium metal as the
anode in Li-S batteries is the lower coulombic effi-
ciency, corrosion, and the lithium plating, Hpls
check deletion of “analysis of”B which leads to
exploitative reactions [59-61]. Requirements for
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electrolytes include elevated ionic conductivity, a large electro-
chemical window, reliability, safety, and low viscosity [62].

Fig. 4 represents the elementary components, namely: catho-
des, anodes, separators, and electrolytes, and their respective
roles in Li-S batteries.

ANODE

> Facilitates
formation of SEI
layer.

CATHODE
> Critical
component.

> Determines
energy density.

ELECTROLYTE

SEPARATOR

> Can reduce the
impedance between
cathode and
separator.

>Component that
transfers ions back
and forth causing
charge and
discharge.

Figure 4. Components and their roles in Li-S batteries.

5 Roles of the Components in Li-S
Batteries

5.1 Role of the Cathode Materials

In Li-S batteries, lithium plays a vital role as the anode and
sulfur takes the role of the cathode material. The electrode
materials can be modified by introducing silicon, tin, and metal
oxides for the former and Li,S for the latter [63].

Sulfur as a cathode material is advantageous as it contributes
to an elevated energy density and a very high theoretical specif-
ic energy; it is economical and environmentally considerate. In
parallel, it is considered disadvantageous due to the non-con-
ducting nature of the active material, polysulfide formation,
dissolution, and the shuttling effect,
and to the volumetric expansion of
sulfur. The undesired characteris-

based materials should possess a proper electron/ion migration
path and contain sufficient volume to house the volumetric
expansion of sulfur in the electrochemical reaction. The key
parameters and the aid provided by the cathode materials are
listed as sulfur content, discharge capacity, and coulombic effi-
ciency, and the capacity retention of various materials such as
polyaniline (PANI), graphene oxide (GO)-S, and reduced
graphene oxide (rGO)/S/PANT in Tab. 1.

5.1.1 Conductivity

Research has been performed with various carbon materials to
study their effects on the conductivity of a battery. As stated,
graphene, carbon nanotubes, and carbon spheres are used.
Generally, graphene is integrated with carbon nanotubes to
build electron/ion transport channels of various ranges in
length [90], and carbon materials derived from biomass are
also used [91-95].

A study of the role of carbon materials revealed that they ini-
tially improve the conductivity but do not provide an optimal
solution since a reduction in energy density was also observed.
Scientists [39] regarded it important to reduce the carbon con-
tent in cathodes where the ideal and desirable quantity is less
than 5%. Carbon as one of the cathode materials aids in the
betterment of the porosity, wettability, and interaction with
polysulfides.

5.1.2 Mitigation of the Shuttle Effect

Polysulfide shuttling is a phenomenon that scientists have been
battling against through extensive research. It includes the
formation of polysulfides in the battery and the growth of the
same into long-chain polysulfides upon charge and discharge.
This negatively affects the parameters and functioning of
the battery. Various research efforts on cathode materials,
electrolytes, and catalysts can help in the physical anchoring

Table 1. Empirical parameters associated with various cathode materials for Li-S batteries.

tics of sulfur can be battled by com-

= . . Material Empirical data Ref.
bining the material with a carbon
material, such as porous carbon PANI@S/C Sulfur content 43.7 wt %, discharge capacity 635.5mAhg™ at 10C [84]
[64-68], graphene [69-73], carbon rate, coulombic efficiency 91.7-103.2 %, capacity retention 60 %
nanotubes [74-77], and carbon after 200 cycles
spheres [78], and conductive poly- GO-S Sulfur content 66 wt %, discharge capacity 1320 mAh g™ at 0.02C [85]
mers [79-81], where metal organic rate, coulombic efficiency 96.4 %, capacity retention 60 %
frameworks (MOF) and their usage after 200 cycles
in battli lysulfid 1
noa lnlg poysurides are a ?0 P rGO/S/PANI Sulfur content 51 wt %, discharge capacity 809 mAh g™, [86]
and coming [82,83]. The choice of capacity retention 74 %
the cathode material plays a signifi-
cant role as it influences the con- GO@S/C Sulfur content 51 wt %, discharge capacity 1433 mAhg™, [87]
ductivity, the shuttle effect, and the capacity retention 37 %
anchoring of polysulfides. Carbon CMK-3/S/PEDOT:PSS  Discharge capacity achieved 1140 mAh g™, coulombic efficiency [88]
materials are employed to present 93-97 %, capacity retention 80 % after 100 cycles
an electron and an ion with an .

CMK-3/S@PANS@TPS  Discharge capacity 1246 mAh g™ at 0.25 C rate, coulombic [89]

adequate space for the reaction of
non-conductive sulfur. The carbon-

efficiency 98.2 %, capacity retention 89 % after 100 cycles
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of polysulfides and the chemical anchoring of functional
groups.

In recent studies, a promising way emerged to mitigate the
shuttle effect in Li-S batteries by single-atom catalysts whose
catalytic efficiency is higher in the conversion of lithium poly-
sulfides. A novel S@Co-P cluster/NC cathode (NC, N-doped
carbon) is a dual-atom site whose catalytic mechanism is
coupled with moderate chemical absorptivity which signifi-
cantly accelerates the conversion of lithium polysulfides. This
innovative material demonstrated good cycling performance of
roughly 200 cycles at a low rate of 0.2C, with a reversible
capacity of 1015mAh g™ and capacity retention of 81.8 % at an
elevated sulfur content of 6.2 mgcm™ and high areal capacity
of 6.5 mAhcm™ [96].

Shuttling effect mitigation enhances the cycle lifespan of the
Li-S batteries, which would use encapsulating polysulfide elec-
trolytes (EPSE) to suppress the parasitic reactions occurring in
the battery. Using 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoro-
propyl ether (HFE), a superior outer shell solvent, those EPSE
can be constructed. These HFE-EPSE-based Li-S batteries
showed an extended lifespan from 54 to 135 cycles with a sul-
fur cathode of about 4.4 mg cm™ loading and an ultrathin-film
lithium-metal anode. This study sets forth the importance of
polysulfide solvation chemistry for the construction of im-
proved EPSE and highlights the role that weakening the solvat-
ing power of the outer shell solvents plays in the development
of viable Li-S batteries [97]. Analogously, a redox co-mediator,
dimethyl diselenide (DMDSe), helps to facilitate the sulfur
redox kinetics in Li-S batteries with EPSE. The efficacy of
DMDSe lies in reducing the anode parasitic reactions of LiPS
while it improves the liquid-liquid and liquid-solid conversion
kinetics. As an end result, a Li-S pouch cell with a steady 37
cycles and a high energy density of 359 Whkg ™ is achieved
[98].

When the cathode material and liquid electrolytes help in
the mitigation process, an organic-based SEI also has its equal
part in the conversion of polysulfides. The restricted cycle life
time of Li-S batteries is caused by parasitic interactions be-
tween the LiPS and the Li metal anodes; therefore, construction
of an organic-based SEI using 1,3,5-trioxane, a reactive co-sol-
vent, is vital. This solvent gets distributed Bpls checkll on the
surface of the Li metal anode and protects it from interactions
of the LiPS parasitic reactions, thus enabling a long cycle life
span of Li-S batteries. As a result, the organic-rich SEI increases
the cycle life of Li-S coin cells with 50-um Li anodes and
4.0-mg cm™ sulfur cathodes from 130 to 300 cycles. Addition-
ally, a 3-Ah-level Li-S pouch cell attained a high energy density
of 400 Whkg™', owing to the organic-rich SEI [99]. Another
research work using a Nafion protective layer showed a good
cycle lifespan, which was doubled to 92 cycles and aided in
maintaining the lithium metal anodes in functioning Li-S bat-
teries [100].

Although the Li-S battery has huge potential as an energy
storage device and it is considered to enhance the cycle life,
capacity retention, and general performance of Li-S batteries,
the shuttle effect must still be minimized. To make these batter-
ies more useful for a wide range of applications, such as electric
vehicles and grid energy storage, researchers are still investigat-
ing these techniques and creating novel materials.
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5.1.3 Physical Anchoring of Polysulfides

Pore size reduction of the carbon material in the cathode used
helps prevent the return of sulfur to its elemental state (Sg) but
keeps it converted to S, or S,, and thus long-chain polysulfides
cannot be formed. Xin et al. [101] performed an experiment
where carbon with a micropore size of 0.5 nm was used in place
of a sulfur host in the cathode. This displayed outstanding
results with a capacity retention rate of 200 cycles at 0.1 C and
a specific capacity of 800 mAh g™ at a higher rate (5 C). Micro-
porous carbon is said to restrict sulfur to its S, and S, forms
whereas mesoporous carbon provides sufficient space for Sg
molecules, thus extensively preventing long-chain polysulfide
formation [102].

Moving to total sulfur loading, the size of the micropores in
carbon materials has a lower significance for and influence on
the performance and capacity of the battery. In certain cases,
the particle size may enable appreciable contact between the
active components and encourage the movement of electrons
or ions, which subsequently increases Mpls checkl the utiliza-
tion of sulfur. This may lead to dangerously high contact with
the electrolyte, thus causing excessive dissolution of polysul-
fides. There exists a particle size that is known as the golden
particle size, in the case of ZIF-8, a MOEF. It is approximately
equal to 200 nm and brings sulfur utilization and polysulfide
dissolution into equilibrium [103].

5.1.4 Chemical Anchoring of Functional Groups

The polarity of functional groups used can be altered to allevi-
ate the shuttle effect as a chemical reaction between the groups,
and polysulfides can control the shuttle effect. Cathode materi-
als that possess good conductivity can have their surface modi-
fied to control the polysulfide migration to the electrodes. The
conductivity can be modified as demonstrated by Qiu et al.
[104] who treated reduced graphene with ammonia. In another
case, Luo et al. [105] employed a carbon matrix with sufficient
oxygen-based functional groups in the place of the sulfur host.
This increased the stability of the sulfur due to its interaction
with oxygen and over 2000 cycles produces a reversible capaci-
ty of 500mAh g™

5.2 Role of the Anode Materials

Li-S batteries are greatly impaired by poor coulombic efficiency
and shortened lifespan, leading to polysulfide shuttling and
out-of-control growth of lithium dendrites. The increase in
dendrite creation needs to be suppressed and the interconnec-
tion between dissolvable polysulfides and lithium must be
hindered, which is crucial for a sheltered and effective func-
tioning of the anode material and also for elevated capacity in
Li-S batteries. Tab.2 represents the functions of a variety of
anode materials, namely, Li-B, nanostructured lithium sulfide,
Si-O,-based anodes, and carbon materials.

The carbon material utilized in Li-S batteries acts as conduc-
tive additive but also as preventer of the shuttle effect, spatial
protector, and anode protector [110].
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Table 2. Various anode materials and their functions.

issue. The porosity and random-
ness of the layer allow the phenom-

Anode material Functions

Ref. enon of side chain reactions at

Li-B alloy as anode

Nanostructured lithium-

sulfide materials electrode interface blockade

SiO,-based anodes Superior charge-discharge properties

Carbon materials
regard to the environment

Restraining the creation of dendritic growth, bringing down
the blockage in the interlayers of electrode

Restraining the creation of dendrites, bringing down the [107]

High availability of sulfur, low cost, and sustainability with [109]

[106] particular locations, leading to the
deposition and dissolution of lithi-
um [131-134].

There are methods towards the
protection of lithium metal anodes
[108] through electrolyte modification-
based approaches like liquid elec-
trolytes, additives, ionic liquids,
polymers, and inorganic solid-state

For more than a century, technologies such as Pb-acid and
Ni-metal batteries have been used in various applications like
automobiles and drones [111-113]. Li-ion batteries may have
taken over the portable electronics market, despite their limit-
ing charge storage capacity and rapid attainment of theoretical
ranges; but other devices have been explored for higher energy
density, cost-effectiveness, and good cycle life [114-116].

Metal lithium is a highly important component in Li-S bat-
teries as it pushes for high energy because of its low gravimetric
density, quick recharge ability, low density, and electrochemical
potential [117].

The depreciation of lithium metal as an anode is a huge issue
that combines the consequences of reactivity in the anode, the
operating conditions, and the type of electrolytes used. The
development and amplification of lithium microstructures on
the surface of lithium during cycling is a regular occurrence
when the electroplating of metals occurs at a high current
[118-120]. Electrochemical deposition of lithium and the crea-
tion of dendrites have been evaluated in the past, and models
based on theory showing the deposited lithium microstructures
have been explored [121-123]. The most
important consequence of the unchecked
growth of lithium microstructures is the
presence of dead lithium, which may lead
to safety problems and capacity loss [124].

Electronic and ionic entrapment of the
dead lithium occurred throughout the crea-
tion and growth of a robust solid electro-
lyte interphase during repetitive cycles.

electrolytes [135-144].

5.3 Role of Separators

Desirable characteristics of a separator include high stability,
longer life span, high efficiency, electrochemical, dimensional,
thermal, and mechanical stability, and high permeability to-
wards the electrolyte [145-147]. Commonly used separator
materials are polyethylene, polypropylene, and their combina-
tion [148]. Functional separators are responsible for the separa-
tion of the anode and the cathode by restricting the physical
contact between them while enabling ion transport in the cell
[147], and their classification is shown in Fig. 5.

There is no electrochemical activity involved between the
membrane and the electrolyte. Physical features that define a
separator are its thin and porous design. Functional separators
are an improvised design where a functional group is intro-
duced as a coating on the separator and is expected to provide
additional properties to tackle existing issues in a battery
[146-148]. The design of advanced functional separators
involves three primary parameters. Firstly, the separator thick-

FUNCTIONAL
SEPARATORS

Inactive lithium obstructs the movement in p
the metal anode, accelerates the creation of
dendrites and reduces the capacity of the
device [125]. L
Due to a low reduction potential, unfav-
orable interactions between the lithium
metal, electrons on the surface, and neigh-
boring electrolyte species occur during the
assembly of the cell, which leads to the
creation of a SEI with versatile mechanical
properties [126,127]. Ideally, SEI layers
have high electrical resistance and ionic
conductivity, a wide temperature stability
range, and low electrolyte solubility
[128-130]. Typically, SEI films are fragile
due to their instability, which is a crucial

< Physical barrier separator.

Chem. Eng. Technol. 2023, 46, No. 00, 1-23

ANODE FACING
- SEPARATOR

< Induced lithium growth separator.
< Regulated lithium nucleation separator.
< Hybrid mechanism separators.

© 2023 Wiley-VCH GmbH

CATHODE FACING
SEPARATOR

< Physical adsorption separators.
< Chemical adsorption separators.
< Catalytic conversion separators.

< Multifunctional separators

Figure 5. Classification of functional separators.
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ness influences the ion transport and rate capability. Secondly,
the separator weight influences the energy density. And thirdly,
the porosity of the separator affects the electrolyte uptake and
thus affects the energy per unit volume along with the cycle life
of the battery [147].

Researchers have invested efforts in improvising functional-
ized separators in terms of design, the construction material,
and the preparation process. Noticeable improvements in this
regard include the “plasma-functionalized carbon-layered sepa-
rators for enhanced performance of Li-S batteries”. The mem-
brane is initially irradiated with CO, plasma; is it then coated
using a thin carbon layer and is finally treated with plasma to
provide modifications to the carbon layer. The positive results
observed were increased wettability, electrical conductivity, the
presence of active sites that enable redox reactions and trans-
port of ions, and decreased polysulfide shuttling. The initial
capacity was observed to be 1204 mAhg™, with a remaining
capacity of 802 mAh g™ [146].

Necessary parameters such as initial capacity, remaining
capacity, discharge capacity, fade rate, and capacity retention
are compared in Tab.3 for various separators. Continuous
efforts are being made to improve on this matter and control
well-known issues such as polysulfide shuttling, inadequate
sulfur utilization, and lower cyclability, and hence enable the
industrialization of Li-S batteries.

5.4 Role of the Electrolytes

The electrolyte is one of the constituent parts of a battery; it
transfers ions between the two electrodes, which causes the
cycle of both charging and discharging in batteries. Electrolytes
can have billions of combinations of salts, solvents, and addi-
tives. The electrolyte functions as a catalyst to make the battery
conductive by pushing for the movement of ions between the
electrodes [53]. Tailoring of electrolytes in Li-S batteries plays a
major role in battery chemistry. When the cathode hosts’
capacity for adsorption is insufficient to anchor the LiPS, they
will separate from the cathode surface and move towards the
anode under the influence of their concentration gradient.
Therefore, evading the generation of polysulfides with novel
electrolytes (both liquid and solid electrolytes) could mitigate
the shuttle effect.

Liquid electrolytes, such as ether-based electrolytes, are com-
monly used to reduce the solubility of LiPS. The assembled
batteries with fluorinated diether (FDE; 1,3-(1,1,2,2-tetra-
fluoroethoxy)propane) electrolyte exhibited a specific capacity
of 701mAhg™ at 0.5C and retained an average of 99%

coulombic efficiency even after 200 cycles. Furthermore,
insertion of fluorinated ethers into the lithium bis(fluoro-
sulfonyl)imide (LiFSI)/DME electrolyte could minimize the
solubility of LiPS by delivering superior performance of
775mAh g™ at 0.05C after 150 cycles, with the formation of a
LiF-rich SEI film on the lithium metal surface [151].

Solid electrolytes are introduced in all-solid-state lithium-
sulfur batteries (ASSLB) as they have tremendous prospects for
newer-generation storage systems because of their elevated spe-
cific capacity, eco-friendly nature, and lower cost. This includes
the use of solid electrolytes, which are inorganic, polymeric,
and composite electrolytes [152]. Quasi-solid-state gel polymer
electrolytes (GPE), which involve the integration of liquid elec-
trolytes into solid polymer matrices, have been explored, for
which outstanding ionic transport and stunted interfacial resis-
tance provided by the GPE are parts of the progress made in
Li-S batteries. There are challenges that restrict the renewal of
organic carbonate-type electrolytes with LiPF4 as a conducting
salt. The development of stable electrolytes that work in high
voltage ranges such as 5V is a challenge that has been tackled
by the advanced systems of electrolytes involved in film-form-
ing high-voltage additives and new solvents [153].

6 Polysulfide Adsorption Test

Lithium-sulfur batteries possess an appreciably high theoretical
capacity of 2500 Whkg™', whereas Li-ion batteries possess a
theoretically calculated capacity of 420 Whkg™"' [154-156].
Along with this quality, the low cost and abundance of sulfur
showcase Li-S batteries as an attractive innovation. There exists
a hindrance to the wide application of Li-S batteries: polysul-
fide shuttling and the resulting degradation of the batteries.
Polysulfides are the intermediates formed in the redox reaction
where sulfur is converted to lithium sulfide [157-160]. Multiple
innovations have been put forth to encounter the formation of
polysulfides. The findings include the installation of hosts with
higher surface area and a porous structure such as hollow car-
bon spheres [161,162]. The hosts exhibited satisfying perfor-
mance over the first few hundred cycles and ceased to do so
over the rest of the cycles, when the familiar degradation and
polysulfide presence were observed. This was because of poor
interactions between the nonpolar host material and the polar
polysulfides. Further, chemical reactions were sought after to
overcome this issue of insufficient interaction, where metal
oxides, such as, e.g., AL,O3, SiO,, TiO,, and MnO,, were con-
sidered along with metal sulfides and metal nitrides [163-173].
The efficiency of these hosts can be measured by estimating the

Table 3. Various separators employed in Li-S batteries and their experimental results.

Separator Experimental results Ref.
Plasma-functionalized Initial capacity 1204 mAh g', remaining capacity 802 mAh g™ [146]
carbon-layered separators (cycles: 100, rate 0.2 C)

Multiwall carbon nanotubes Discharge capacity 1324 mAh g™, fade rate 0.14 % per cycle [149]
PMIA/octaphenyl-POSS Initial capacity 900 mAh g™, capacity retention 67.8 % [150]

membrane (HPPS) after 500 cycles
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polysulfide adsorption capacity, which can be
assessed by a set procedure, as explained below.
Seven metal oxides, seven respective metal sul-
fides, and a metal nitride were chosen as subject
materials for the test [174,175]. The Brunauer-
Emmett-Teller (BET) theory was applied to the
materials for normalization of the surface area.
Preparation of the sample was carried out as fol-
lows. Candidate materials with a surface area of
0.5 m? were added to Li,Ss with a molarity of 3 mM
in DOL and DME solution of 4 mL for a duration

Manganese dioxide

Titanium disulfid e

Ferrous sulfide

Copper sulfide

Titanium nitride

Li,S¢ Adsorption (%)

of 3h. Li,S¢ is a long-chain polysulfide formed LZine sulfide
when sulfur is subjected to a chemical reaction with ]
Li,S in a solution of DOL/DME. For BET assess- Cobalt sulfide
ment, the candidate material of 200 mg was heated
) Carbon
to 120°C and then degassed for a period of 10h,
and the surface area and porosity were then ana- Figure 6. Polysulfide adsorption percentage on various host materials.

lyzed. For the adsorption test, the Li,Ss prepared
was stirred at a temperature of 70 °C overnight in
an air-filled glove box to provide a Li,S¢ solution of a brownish
red color and a concentration of 0.25M, which was then
diluted to 3M M3 M is too highl for the test. The candidate
samples were dried overnight at 80 °C. For UV-Vis spectrosco-
py> 2 mL of the prepared solutions were extracted and restricted
from contact with other entities. UV analysis was performed
using an Agilent Cary 6000i UV instrument. For inductively
coupled plasma atomic emission spectroscopy (ICP-AES) mea-
surements, CuSO,4.5H,0 and LiNOj; were dissolved in 200 mL
deionized water for calibrating S and Li for their intensities to
account for offsets. Li,S¢ solutions of concentrations varying
from 0.5 to 3.0 mM were diluted in 10 mL deionized water. The
solutions prepared for the polysulfide adsorption tests were
also in 10 mL deionized water. The aforementioned solutions
were analyzed in the ICP-AES measurement to figure out the
intensities of S and Li. For the X-ray photoelectron spectros-
copy (XPS) measurement, the candidate materials were centri-
fuged for easy separation. The desired sub-

jects were placed in a vacuum chamber. A -

PHI Versa probel scanning XPS micro-
probe system was used to perform the XPS
analysis [176]. The results of the tests and
analyses demonstrated the strong polysul-
fide adsorption capacity of MnO, and
V,0s. Different host materials show differ- | _
ent percentages of polysulfide adsorption,

as seen in Fig. 6.

*+ Ordered

high sulfur loading

7  Li-S Batteries: Challenges
and Solutions

Li-S batteries are a type of rechargeable
battery that offers a multitude of benefits
such as reduced raw materials cost, in-
creased safety features, and reduced burden
to the environment. But there are also
problems associated with these batteries,
like the full utilization of the active materi-
al, upkeep of the electrode structure, and a

flammability, Hquid

possible solution.

L\
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+ Usage of elastic structure
with controlled pore size.

mesoporous carbon  with
large number of inner
pores is a good option for

good cycle life with efficiency, as discussed in Fig.7. These
issues limit their usage for commercial purposes [177].

7.1 Flammability of Organic Electrolytes

Li-S batteries attract remarkable attraction due to their sub-
stantial theoretical capacities and energy densities. In spite of
outstanding progress in the field, there are concerns about the
safety during the usage of organic electrolytes. There are con-
cerns about their flammability, toxicity, liquid leakage, and
volatilization due to the presence of liquid organic electrolytes.
There is also the possibility of dendrite formation during
cycling, which may result in internal short-circuiting, leading
to combustion and even the explosion of cells.

= Concem about toxicity,

leakage and wolatilization.
+ Use of solid electrolytes a

© 2023 Wiley-VCH GmbH
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« Bottleneck of Li-S
e batteries.
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2 Polysulfide
active =
. shuttling
materials
|
Flammability Growth of
of organic lithium y
electrolyte dendrites 4
« Spiky microstructures on
anode surface
« Parasitic reactions
leading to “Dead Li”
S « SEI apossible sohtion
A

Figure 7. Drawbacks of Li-S batteries.
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Of the solutions being explored, a potential
answer is the usage of solid electrolytes, by substi- d.
tuting the conventional electrolytes with solid elec-

trolytes, i.e. G

- oxide-based solid electrolytes

- sulfide-based solid electrolytes 9

- Unfortunately, there is also a fair share of prob-
lems with solid electrolytes such as:
- low conductivity
- poor chemical stability in the presence of air
- unfavorable electrode/electrolyte interfaces
The preparation of an electrolyte-electrode sur-
face with a large area of contact is described in
[152,153].

7.2 Utilization of Active Materials

Figure 8. (a) Carbon materials in spherical shape (107°), Epls explain 10°H (b)

carbon nanoparticles (uniform, 2-50 nm in diameter), (c) carbon (pores present,

Consumption of the entire volume of active materi-
als is a crucial challenge to overcome. The usage of
a structure that is elastic in combination with a
constrained pore size could be used to aid the changes in the
volume of the active material.

Major attempts to boost the electrochemical performance of
Li-S batteries are based on improving the carbon-based sulfur
composite. Tab. 4 lists a number of composites synthesized by
different methods to explore solutions. An ideal situation for a
carbon-sulfur composite would have
- the affinity for hosting sulfur
- small pores without the presence of large outlets to accom-

modate polysulfides
- high electrical conductivity
- interaction of the liquid electrolyte and the active material

An ordered spherical carbon material, which is mesoporous,
is a good variable to function as the matrix to contain higher
amounts of sulfur with no effect on the performance. Carbon
nanofibers, which are porous and hollow nanofibers, are amaz-
ing substrates to be integrated with sulfur. They exhibit out-
standing cyclability over 100 cycles, as seen for the different
hollow, porous structures in Fig. 8 [177, 178].

7.3 Polysulfide Shuttling

The shuttle effect happens when the sulfur species added
reaches the negative side of the electrode surface and undergoes
reduction. This is considered to be a bottleneck of the Li-S

hollow), (d) sheets of GO, (e) carbon nanofibers (pores present), and (f) carbon
nanofibers to accommodate sulfur (hollow).

batteries. This effect results in poor cycling stability and severe
corrosion at the anode of Li-S batteries. The diffusion move-
ment of polysulfides back and forth between the anode and the
cathode is called the shuttle effect [64].
At present, there are two approaches to limiting the shuttle
effect:
- clogging the polysulfide migratory route by modifying the
separator or by insertion of interlayers
- using porous materials to avoid the diffusion of polysulfide
into electrolytes by anchoring the polysulfide on the cathode
surface by adsorption [179]
An analytical method to combat polysulfide shuttling is the
analysis of the adsorption capability of host materials used in
the batteries.

7.4 Growth of Lithium Dendrites and Ways to
Suppress Them

The anode is one of the crucial components of Li-S batteries
responsible for the extended cycle stability of the battery. The
main issue with lithium metal cells is that, during charging,
spiky microstructures are formed in an irregular manner.
Without the addition of organic compounds, which will result
in brighter and smoother metal surfaces, the metal surface is
dendritic and powdery. Formation of the dendrites is based on

Table 4. Composites synthesized by various methods can also be used to overcome the problem.

Method Description Integration of Sand C ~ Features

Mixing Integration of contents by stirring Poor -
magnetically

Ball-milling Usage of new/modified binder Moderate Energy intensive
material

Thermal treatment One- and two-step heating Robust Good mesoporous

carbon
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the mass transportation of metal cations that advance from the
bulk electrolyte to the outer limit of the double layer, which is
followed by electro-adsorption. The cations are then reduced to
adsorbed atoms, which then diffuse and become incorporated
into the metal lattice. With regard to Li-S batteries, the devel-
opment of lithium dendrites causes safety issues and a low
cycle life. A surface energy model has been proposed to explain
the complex interrelation between the Li metal anode and the
electrolyte. The breaking up of Li dendrites causes the phenom-
enon of “dead Li”. There is also the possibility of exploding of
the Li metal anode because of short-circuiting due to Li den-
drites. The charge-induced growth model and the SEI model
have been used to overcome this issue.

The charge-induced growth model is based on the Nernst
equation.

* RT QRed
Erea = Epea = - In (a‘; ) 9)
X

Other methods explored for Li metal protection are to per-
mit Li to react with other materials to create a soft film such as
a SEI film in order to prevent dendrite formation. Additives are
added to electrolytes to prevent or retard dendrite formation.
Nanostructures are used to bring about the deposition of Li by
ultralow current density.

The lithium metal ions are subject to the Lorentz force
because of electromagnetic fields which are pushed into a
spiraling motion, which results in the magnetohydrodynamics
(MHD) effect, which efficiently promotes the transfer of mass
and the distribution of ions to inhibit the growth of dendrites
and obtains the uniform deposition of lithium. Results show
that electrodes within the magnetic field exhibit good cycling
and rate performance in Li-S batteries [180-183].

8 Recent Advancements in Li-S Batteries
8.1 Novel Binders and Binder-Free Methods

The working of high-performance batteries depends on the
optimization of their components, from electrolytes to binder
systems. A variety of polyvinyl imidazolium-based nanoparti-

cles are being used as binder components in cathodes of Li-S
batteries. This results in a highly increased specific capacity

Table 5. Novel binders in Li-S batteries.

and also an outstanding long-term electrochemical durability
for 1000 charge-discharge cycles.

Carboxymethyl cellulose lithium (CMC-Li) can be used as a
novel binder in Li-S batteries. CMC-Li is a novel water-based
binder prepared by utilizing cotton as raw material. In com-
parison to the polyvinylidene fluoride (PVDF) binder, the bat-
tery with CMC-Li binder seems to retain 97.8 % of the initial
reversible capacity after the first 200 cycles at 176 mAh g™
[184-186].

The capacity specifications of binders such as MPVDEF,
CMC, and rGO/boron nitride (BN) and their descriptions are
given in Tab. 5.

Monolayers of SnO, nanoparticles can also be used as a
binder-free method, by uniformly stacking on the exterior sur-
faces of carbon nanotubes and bundles within the sheets, which
are stacked across each other.

Novel polymers may be of use as binders that are conductive
in nature for elevated-capacity anodes, which contain Hpls
checkM silicon in Li-S batteries. This is done to explore issues
such as quickly fading capacity and the impaired cycle life of
silicon anodes because of their massive volume variation dur-
ing continued cycling. The abundance of the carboxyl groups
in the polymer chains can effectively increase the performance
of the binding force to the silicon nanoparticles. The polymer
binders have been classified as cellulose binders, conductive
binders, and self-healing binders [188].

A composite of the novel polymer type called MPVDF has
also been developed, by implanting maleic anhydride-grated
PVDF into PVDF as a binder for lithium cobalt oxide in Li-S
batteries. Comparative investigations of MPVDF and PVDF as
binders have been done with scanning electron microscopy
(SEM), X-ray diffraction (XRD), and electrochemical measure-
ments.

Composite films such as rGO/BN have been created by fil-
tration in vacuum, which is facile in nature, followed by ther-
mal treatment. The rGO/BN composite film with a boron ni-
tride content of 2 wt % is an anode material that is binder free,
with an elevated reversible specific capacity of 278 mAh g™ at a
high current density of 100 mA g™ and a very high rate capabil-
ity and capacity retained over the first 200 cycles. The im-
proved performance of the composite film is because of the
unique structure and synergistic effects between the graphene
and the layered boron nitride [189-192].

Novel binder Description Capacity specification Ref.
Polyvinyl imidazolium-based binder =~ Nanoparticles 8 % capacity loss [183]
CMC-lithium Water based, using cotton as raw material 4.49 % capacity loss [186]

SnO, nanoparticle monolayers
nanotubes and bundles

MPVDF Implanting maleic anhydride-grated
polyvinylidene fluoride in PVDF
rGO/BN composite films Designed by vacuum method and followed

by thermal treatment

Stacked uniformly on exteriors of carbon

Severe capacity fading, rapid aggregation of Sn  [187]
particles, huge change in volume (over 300 %)

Discharge capacity increases by 38.5 %, capacity  [188,189]
retention improved from 84.5 % to 90.2 %

After the first 200 cycles, capacity retention [190,191]

seems to be high
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8.2 New Modified Electrolytes

Novel electrolytes, their description, and advantages are com-
pared in Tab.6. Ceramic and polymeric electrolytes supply
benefits in the context of design simplicity and safety during
operation but have lower conductivities than organic electro-
lytes. Solid electrolytes remove the need for containment
of liquid electrolytes, ~which improves  durability.
Li;, AL Ge, ,(PO4); (LAGP) and PVDF-co-hexafluoropropy-
lene (PVDEF-HFP) have the highest conductivities but are dis-
advantageous due to their mechanical strength and electrode
compatibility [193].

Surface-modified inorganic salts are used as nanofillers in
polymer electrolytes to improve their properties and their
application in both non-rechargeable and rechargeable cells.
The nanofillers consist of alumina (Al,O3) and titania (TiO,)
powders with super-acidic groups, which are made to enter the
surface. They are then added to high- and low-molecular-
weight PEO and LiClO,. In this way, various composites can be
obtained that exhibit good stability and a high lithium transfer-
ence number. The use of polymer electrolytes is considered in
order to solve safety matters due to the lithium dendrite growth
in the electrolyte [194, 195].

An altered silyl-terminated polymer electrolyte by a new fab-
rication procedure has been proposed. Due to the three-dimen-
sional (3D) network-like structure, the amorphous phase in the
polymer electrolyte has an elevated ionic conductivity
(0.36x10°Scm™), an increased thermal stability (T'=379°C)
and also a very high lithium ion transference number (0.65).
This has become a promising candidate for realistic processes
[196, 197].

The major matter in question with liquid electrolytes is the
high level of solubility of the intermediates in liquid organic
electrolytes, leading to the shuttling effect and an alarming loss
of capacity. In comparison to electrolytes of a solid nature, con-
ventional liquid electrolytes are the preferred choice in Li-S
battery commercialization. There has been a focus to develop
various host materials for sulfur as the cathode, safeguarding
the lithium metal anode by the usage of SEI coatings and the
advancement of the structure of Li-S batteries [196]. The
current research findings based on liquid electrolytes in Li-S
batteries are focused on designing a lean electrolyte cell, to
ensure a high impact on the gravimetric capacity. As a result,

Table 6. Novel electrolytes and advantages.

further efforts have been made to design a 3D cathode made of
a tunable carbon nanofiber network with limited porous sub-
strate, which can deliver a high reversible discharge capacity of
802 and 607 mAhg™", with a capacity retention of 82 % after
200 cycles and a long shelf life of 3 months at rates of 0.2 and
0.1 C. Hence, in a lean electrolyte cell, limited nanopores pre-
vent the utilization of the electrolyte, thereby achieving high
electrochemical efficiency and stability to attain high areal and
gravimetric capacities of 11.5 and 9.6 mAhcm™ and 569 and
476 mAh g™, respectively 198].

Basic ionic liquids and Li-salt molten complexes are superb
candidates for electrolytes, given their ability to greatly subdue
the LiPS dissolution. Molten compounds do not readily dis-
solve solutes of an ionic nature, leading to promising operation
of Li-S batteries for more than 400 cycles with a discharge
capacity greater than 700mAh g™ sulfur and coulombic effi-
ciencies greater than 98 % throughout the cycles. In addition to
this, a fluorinated nonflammable solvent does not break the
solvent structure, which greatly advances the power density of
Li-S batteries [197].

GPE intermediates separating solid- and liquid-based elec-
trolytes function not only as an electrolyte but also as a separa-
tor, which reduces the leaking of liquid (aqueous) electrolytes
and increases the interfacial bulk resistance of solid electrolytes.
In Li-S batteries, modification of manifold substrates such as
PEO, PVDF, PVDF-HFP, poly(m-phenylene isophthalamide)
(PMIA), and poly(methyl methacrylate) (PMMA) alleviates the
severity of the polysulfides shuttling effect and hinders the
enlargement of dendrites [199].

A newly designed gel-ceramic multilayer electrolyte serves as
the electrolyte and is separated Mspecific?l for Li-S batteries.
The Li-S cells, not restricted by the shuttle effect, have a higher
electrochemical performance and an initial discharge capacity
at a maximum of 725 mAh g’1 [200].

Preliminary studies have shown that the prepared composite
gel polymer electrolytes (CGPE) can be implemented as likely
electrolytes for Li-S batteries. Inclusion of plasticizers has
significantly improved the ionic conductivity of the gel electro-
Iytes [201,202].

GPE can help lower the dissolution and diffusion of inter-
mediary polysulfides of lithium, elevating the cycle life and
reducing the severity of the self-discharge of Li-S batteries. A
really improved stability can be obtained regarding a capacity

Novel electrolytes Advantages Ref.
Ceramic and polymeric electrolytes Design simplicity and safe operation [193]
Organic carbonate-type electrolytes with LiPFg Advanced systems, film-forming high-voltage additives and new solvents [194]
Salt-in polymeric electrolytes Good stability and high lithium transference number [195]
New altered silyl-terminated polymer electrolyte Very high lithium ion transference number, elevated ionic conductivity [196,197]
Liquid electrolytes Increase ionic conductivity, lead to better capacity retention, suppress [198]
polysulfides dissolution

Gel polymer electrolytes Reduce leaking of liquid electrolytes, hinder enlargement of dendrites [199]
Gel-ceramic multilayer electrolyte Higher electrochemical performance, unconfined shuttle effect [200]
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retention of about 72 % at a current density of 835 mA g after
100 cycles [202].

8.3 Design of Permselective Membranes

Membranes in batteries generally play the role of preventing
short circuits and contact between electrodes, causing ion flow,
and displaying stability of different forms. The separators in
Li-S batteries enable ion transfer and simultaneously pose as a
barricade between the electrodes; yet, these characteristics are
not sufficient to control polysulfide shuttling. To amend this
inability, permselective membranes are introduced in the bat-
teries; they can be defined as separators that enable selective
ion transfer while satisfying other functions of its kind: the
movement of electrolytes with the desired ions is enabled while
the transport of undesirable ions is restricted. A permselective
membrane is said to have 100 % efficiency if the transport of
undesirable ions is entirely constricted [203-206].

Various advancements have been made in the design of
membranes relating to the negative charge of multiple func-
tional groups, as a pathway to tackle polysulfide shuttling. In
this, Nafion and graphene oxide have presented themselves as
go-to options for the mentioned type of membrane. Among
the pair, Nafion, a cation-selective membrane, has gained
greater attention due to its SO3 functional group, appreciable
Li* conductivity, and great stability [155]. Fabrication of the
Nafion cation-selective membrane is carried out by performing
lithium-ion transfer on a film of Nafion 212 ionomer in a solu-
tion containing 1.0 M LiOH in a mixture of water and ethanol
(I:1 wt/wt) [207]. A Li-S battery employing a Nafion mem-
brane was observed to have 1185mAhg™ initial discharge
capacity and a coulombic efficiency above 97 %. A comparison
between the Nafion membrane and the Celgard 2400 separator
showed that the latter displayed a retention of 69 % across 50
cycles and the former displayed a retention of only 46 % across
50 cycles, although both separators began with the same initial
capacity. The Nafion ionomer has -OCF,CF(CF;)OCF,-
CF,SOs;Li side chains, and when the Li ions dissociate from
the chains, a negative charge is obtained by the SO; groups
[208-212]. This allows the movement of Li* and entirely re-
stricts polysulfides, which are negatively charged. The clustered
structure of the film ensures the prevention of the transport of
polysulfides. Permselective membranes thus solve an impeding
issue: polysulfide shuttling, which has been the greatest hin-
drance to the commercialization of Li-S batteries.

9 Outlook and Scope

Since the introduction of Li-S batteries in the 1960s, there have
been high expectations for the propitious elevated-energy den-
sity battery system. The last few decades have seen increased
progress in the working of the Li-S batteries. More focus has
been on bettering the Li-S batteries for a more practical
approach in regard to preparing a new lineage of the sulfur
cathode, establishing a kinetic promoter, bringing about a
particular solvation of ions in the electrolyte, and a means to
safeguard the lithium metal anode [213].
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As we have almost exhausted all types of applications of
Li-ion batteries, there is an emphasis on research regarding
Li-S batteries that might depend on reversible redox reactions
within sulfur and lithijum. Carbon-based materials, organic
materials, metal oxides, MOF, metal hydroxides, metal sulfides,
metal nitrides, metal carbides, metal phosphides, and metal
borides are being used as host materials for Li-S batteries [214].

Particular solutions of electrolytes have been used to over-
come reactions across the surface of the lithium metal anode,
by the formation of good passivation films on the surface. To
increase the scope of Li-S batteries, issues affecting the anode
material such as polysulfide shuttling must be ameliorated or
completely eradicated, and efforts must be undertaken to come
up with high-performance sulfur cathodes. Usage of liquid
ionic solutions, electrolyte additives with mediators, substitute
anodes, and silicon-lithium-sulfur are considered [215]. It is
good to see that recent research work is more focused on the
mitigation of polysulfides and parasitic reactions by using
novel single-atom catalysts, and ether-based electrolytes, and
on redox co-mediators for EPSE, an organic-based solid elec-
trolyte interphase, and an effective Nafion protective layer for
stabilizing lithium metal anodes [96-100]. These research stud-
ies have achieved polysulfide conversion and showed a good
number of cycles while charging and discharging, but there is
still a need to link the gap between research on Li-S batteries
and realistic applications of the batteries [216].
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Abbrevations

BET Brunauer-Emmett-Teller

BN boron nitride

CGPE composite gel polymer electrolyte
CMC carboxymethyl cellulose

DME 1,2-dimethoxyethane

DMF dimethylformamide

DMSO dimethyl sulfoxide

DOL 1,3-dioxolane

EPR electron paramagnetic resonance
EPSE encapsulating polysulfide electrolyte
GPE gel polymer electrolyte

HPLC high-performance liquid chromatography
LiPS lithium polysulfide

LISICON lithium superionic conductor

MOF metal-organic framework

PANI polyaniline

PC propylene carbonate
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PEO polyethylene oxide
PMIA poly(m-phenylene isophthalamide)
PMMA poly(methyl methacrylate)
PVDEF-CO-HFP  poly(vinylidene fluoride-co-

hexafluoropropylene)

rGO reduced graphene oxide
SEI solid electrolyte interface
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