Detailed electronic structure studies on superconducting MgB₂ and related compounds

P. Ravindran,* P. Vajeeston, R. Vidya, A. Kjekshus, and H. Fjellvåg

Department of Chemistry, University of Oslo, Box 1033, Blindern, N-0315, Oslo, Norway

(Received 12 April 2001; revised manuscript received 19 July 2001; published 20 November 2001)

In order to understand the unexpected superconducting behavior of MgB₂ we have made electronic structure calculations for MgB₂ and closely related systems. Our calculated Debye temperature from the elastic properties indicate that the average phonon frequency is very large in MgB₂ compared with other superconducting intermetallics and its exceptionally higher T_c can be explained through a BCS mechanism only if phonon softening occurs or the phonon modes are highly anisotropic. We identified a doubly degenerate quasi-twodimensional key-energy band in the vicinity of E_F along the Γ -A direction of BZ (having equal amount of B p_x and p_y character) which plays an important role in deciding the superconducting behavior. Based on this result, we have searched for a similar electronic feature in isoelectronic compounds such as BeB₂, CaB₂, SrB_2 , LiBC, and MgB₂C₂ and found that hole doped LiBC and MgB₂C₂ are potential superconducting materials. We have found that E_F in the closely related compound MgB₄ is lying in a pseudogap with a negligibly small density of states at E_F , which is not favorable for superconductivity. There are contradictory experimental results regarding the anisotropy in the elastic properties of MgB₂ ranging from isotropic to moderately anisotropic to highly anisotropic. In order to settle this issue we have calculated the single-crystal elastic constants for MgB₂ by the accurate full-potential method and derived the directional-dependent linear compressibility, Young's modulus, shear modulus, and relevant elastic properties from these results. We have observed large anisotropy in the elastic properties consistent with recent high-pressure findings. Our calculated polarized optical dielectric tensor shows highly anisotropic behavior even though it possesses isotropic transport property. MgB₂ possesses a mixed bonding character and this has been verified from density of states, charge density, and crystal orbital Hamiltonian population analyses.

DOI: 10.1103/PhysRevB.64.224509

PACS number(s): 74.70.Ad, 74.25.Gz, 74.25.Jb

I. INTRODUCTION

The recent discovery of superconductivity with higher T_c (Ref. 1) in MgB₂ has initiated much activity in experimental as well as theoretical studies. Nb₃Ge has long been the record holder of the highest T_c among the intermetallic superconductors. The recently found YPd2B2C touches the same T_c as Nb₃Ge. The work of Bednorz and Müller² from 1986 on the basis of copper oxides started the discovery of a rapidly increasing number of high- T_c superconductors, which the current record is held by among HgBa₂Ca₂Cu₃O_{8- δ} with $T_c \approx 164$ K under pressure.³ During the past decade, remarkable progress in basic research and technological applications has been made on the high- T_c cuprate superconductors. However, the complex crystal structures in combination with the multicomponent nature of the materials involved hinder the full understanding of the microscopic origin of high- T_c superconductivity. Hence, it may be beneficial to study the properties of a simple compound like MgB₂ in detail, which does not only have higher T_c , but also takes a simple crystal structure with sp electrons (involved in the superconducting process) that are easy to handle theoretically.

The observation of superconductivity with higher T_c in MgB₂ raises the question of whether superconductivity with even higher T_c can be found in intermetallics which do not comprise the characteristic CuO₂ planes in high- T_c superconductors. Several properties of MgB₂ appear closely related to high- T_c superconducting cuprates: a low electron

density of states, a layered structural character, and the presence of rather light atoms (like oxygen in cuprates) facilitate high phonon frequencies. Further, although the electronic structure of this material has three-dimensional character, the B–B σ bands derived from B p_x , p_y electrons (believed to be important for the superconductivity) reflect two-dimensional character. Like the cuprates, MgB₂ appears to exhibit hole conductivity, as evidenced from theoretical considerations^{4–7} and experimental Hall coefficient measurement.⁸ Another interesting aspect of the MgB₂ structure is that it has negatively charged honeycomb-shaped B planes which are reminicent of highly negatively charged Cu–O planes in the high- T_c cuprates.

It is often believed that the *d* electrons play an important role for the superconducting behavior of intermetallic compounds. So the experimental search for new superconductors has to a large extent been focused on transition-metal compounds. The background for this is that transition-metal compounds usually possess larger density of states (DOS) at the Fermi level than main-group (sp) compounds. BCS superconductors usually possess larger DOS at the Fermi level (E_F) and the higher T_c in conventional superconductors is related to large $N(E_F)$ values as well as strong coupling of selected phonon modes to the electronic system. Further, the relatively higher T_c in superconducting intermetallics are believed to be coupled to a van Hove-like peak at E_F in the DOS curve, as predicted by various band-structure calculations and indicated experimentally for Ni-site substituted rare-earth nickel borocarbides.9 In MgB2 there is no such

peak-like feature at the vicinity of E_F in the DOS profile. MgB₂ is an sp metal and hence its value of $N(E_F)$ is small compared with that of superconducting transition-metal compounds. On the other hand, theoretical studies⁷ show that the quasi-two-dimensional B σ bands are strongly coupled with E_{2g} phonon modes, which would be consistent with the BCS mechanism. The experimentally observed isotope effect¹⁰ in MgB₂ also indicates phonon-mediated superconductivity. The absence of a Hebel-Slichter peak in the nuclear magnetic resonance (NMR) relaxation,¹¹⁻¹⁴ a temperaturedependent peak around 17 meV in the energy-resolved neutron scattering,¹⁵ a first-order metal-to-metal transition on Al or C substitution,^{16–18} apparently anomalous temperature dependencies of the Hall coefficient¹⁹ and London penetration depth,²⁰ and the need for small μ^* value to explain the experimentally observed higher T_c by the BCS theory²¹ indicate that the mechanism differs significantly from that of the BCS theory.

The discovery of intermetallic superconductors like borocarbides^{22,23} and boronitrides²⁴ with relatively higher T_c [up to 23 K for YPd₂B₂C (Ref. 23)], has encouraged the search for superconductivity in materials possessing light atoms such as B, C, N, H, etc. Superconductivity with T_c in the range 2-4 K has been observed for ternary transitionmetal diborides (YRe₂B₂, LuB₂C₂, YB₂C₂)^{25,26} and in magnetic rare-earth (RE) rhodium borides [RERh₄B₄ (Ref. 27)]. Very recently, the layer-structure compounds β -ZrNCl and β -HfNCl ($T_c = 25.5$ K) have been found to be superconducting upon Li intercalation.²⁸ Another group of materials (maximum $T_c = 9.97$ K reported²⁹ for $Y_2C_2I_2$) is RE carbide halide superconductors with C-C pairs located in octahedrally coordinated voids of close-packed RE atoms. The recent discovery of superconductivity 30 at ~ 14 K in the AlB₂-type phase CaSi₂ indicates that the AlB₂-type structure may be favorable for superconductivity.

There are several mechanisms proposed for the higher T_c in MgB2 and the like. One is based on band-structure findings, $\frac{4}{1}$ which suggests that the superconducting state results from strong electron-phonon interaction and highphonon frequency associated with the light boron atom. This is supported by the relatively large boron isotope effect on T_c .¹⁰ Experimentally observed³¹ decrease in T_c with pressure at a rate of -1.11 K/GPa is consistent with the BCS framework. The low mass of boron is suggested to be conducive to the occurrence of high-phonon frequencies and consequently for higher T_c . Another mechanism called the "universal,"⁵ conjectures that the superconductivity in MgB_2 (similar to that in cuprate superconductors) is driven by the pairing of the heavily dressed holes in bands that are almost full to gain enough kinetic energy to overcome the Coulomb repulsion. A positive pressure effect on T_c has also been predicted⁵ when the pressure reduces the interatomic B–B distance. An and Pickett⁷ maintain that the B σ bands are playing an important role in the superconductivity of MgB₂, and that the B in-plane E_{2g} phonon mode is strongly coupled to this band. Contradictory to the above-mentioned viewpoint, Baskaran¹¹ concluded from the resonancevalence-bond (RVB) theory that the two-dimensional σ bands do not play a crucial role in establishing higher T_c superconductivity and the $p\pi$ band might interfere with superconductivity.

From high-pressure total-energy studies Loa and Syassen³² concluded that MgB₂ has isotropic compressibility. From a high-resolution x-ray powder diffraction highpressure study along with density functional calculations, Vogt *et al.*³³ concluded that MgB₂ possesses nearly isotropic mechanical behavior. From isothermal compressibility measurements Prassides³⁴ concluded that MgB₂ is a stiff tightly packed incompressible solid with only moderate bonding anisotropy between inter- and intralayer directions. However, Jorgensen *et al.*³⁵ found unusually large anisotropy in thermal expansion and compressibility. So, it is interesting to calculate the single-crystal elastic constants of MgB₂ to identify the exact nature of the anisotropy.

Several attempts have been made to enhance T_c by substitution of such elements as Al,¹⁶ Be,³⁶ Zn,³⁷ and Li,³⁸ for Mg and C (Ref. 17) for B, but no practical progress has hitherto been obtained. Moreover, the role of Mg and B site substitution on the electronic structure of MgB₂ has been studied theoretically.³⁹ So, it is interesting to search for compounds with an electronic structure similar to that of MgB₂. Knowledge of electronic structure, DOS, Debye temperature, and related properties are important for assessing the mechanism and nature of superconductivity. In a search for superconducting diborides, BeB2 is a promising candidate since the lighter Be may help to provide larger phonon frequencies and hence increase T_c . If the electron per atom ratio is important for the superconductivity in this class, one should also consider CaB₂ and SrB₂ as interesting candidates. If it is the combination of Mg and B which brings the superconductivity in MgB₂, one has to consider MgB₄ also. If the number of electrons in the B layers is a key for superconductivity in MgB₂, attention should be paid to related layer-structured materials such as LiBC and MgB₂C₂. For these reasons we have made detailed electronic structure studies for the abovementioned compounds.

The rest of the paper is organized as follows. The structural aspects and the computational details about the calculations of the electronic structure, optical spectra, and elastic constants are given in Sec. II. In Sec. III we have analyzed the bonding behavior of MgB₂ using the orbital and site projected DOS, crystal orbital overlap Hamiltonian population (COHP), charge density analysis, etc. The electronic band structure of MgB₂ is calculated and compared with that of closely related systems and also analyzed for possible connections between electronic structure and superconductivity. The elastic and optical anisotropies of this material are calculated and compared with available experimental results. Important findings are summarized in Sec. IV.

II. STRUCTURAL ASPECTS AND COMPUTATIONAL DETAILS

A. Crystal structure details

MgB₂ [Fig. 1(a)] has the AlB₂-type structure⁴⁰ with space group P6/mmm and lattice parameters, a = 3.084 and c

FIG. 1. Crystal structures of MgB_2 , MgB_2C_2 , LiBC, and MgB_4 . Legends to the different kinds of atoms are given in the illustration.

=3.522 Å. It is a simple hexagonal lattice of close-packed Mg layers alternating with graphite-like B layers, viz. B atoms arranged at the corners of a hexagon with three nearest-neighbor B atoms in each plane. The Mg atoms are located at the center of the B hexagon, midway between adjacent B layers.

MgB₂C₂ crystallizes in an orthorhombic structure,⁴¹ space group *Cmca* with a = 10.92, b = 9.46, and c = 7.45 Å. The structure of MgB₂C₂ [Fig. 1(b)] contains graphite-like but slightly puckered boron–carbon layers whose charge is counterbalanced by "Mg²⁺" cations. The mutual coordination of boron and carbon consists of five atoms of the other kind, three of which are located in the same and two in adjacent layers. Each of Mg is coordinated to six B and six C atoms arranged at the corners of a slightly distorted hexagonal prism. The B–C distances within the layers range from 1.562 to 1.595 Å.

LiBC [Fig. 1(c)] crystallizes⁴² in a hexagonal primitive lattice with space group $P6_3/mmc$. The lattice parameters are a=2.752 and c=7.058 Å. The B and C atoms form a planar so-called heterographite layer. The interlayer regions are filled by Li. The B–C distance of 1.589 Å in LiBC is comparable with that in MgB₂C₂.

In MgB₄, the B atoms form interconnected pentagonal pyramids with the Mg atoms located in channels running parallel to the *c* axis. The Mg atoms form zig-zag chains. MgB₄ is orthorhombic, space group *Pnma*, with a=5.46, b=7.47, and c=4.42 Å.⁴³ The average B–B distance in the pentagonal pyramid is 1.787 Å.

Whenever possible we have used the experimental lattice parameters for our calculation, whereas for BeB_2 , CaB_2 , and SrB_2 we have used the optimized structural parameters obtained from total-energy minimization.

B. Computational details for the full-potential linearizedaugmented plane wave calculations

These investigations are based on *ab initio* electronic structure calculations derived from density-functional theory. For the screened plasma frequency and the orbital projected DOS calculations we have applied the full-potential linearized-augmented plane wave (FPLAPW) method⁴⁴ in a scalar-relativistic version without spin-orbit (SO) coupling. In the calculation we have used atomic sphere radii 1.8 and 1.5 a.u. for Mg and B, respectively. The charge density and the potentials are expanded into lattice harmonics up to $\ell = 6$ inside the spheres and into a Fourier series in the interstitial region. The initial basis set included 3*s*, 3*p*, and 3*d* valence and 2*s*, 2*p* semicore functions at the Mg site, 2*s*,

2p, and 3d valence functions for the B site. The set of basis functions was supplemented with local orbitals for additional flexibility in representing the semicore states and for relaxing the linearization errors generally. The effects of exchange and correlation are treated within the generalized-gradientcorrected local-density approximation using the parametrization scheme of Perdew, Burke, and Ernzerhof.⁴⁵ To ensure convergence for the Brillouin zone (BZ) integration, 320 **k** points in the irreducible wedge of the first BZ of the hexagonal lattice for MgB₂ were used. Self-consistency was achieved by demanding the convergence of the total energy to be smaller than 10^{-5} Ry/cell. This corresponds to a convergence of the charge below 10^{-4} electrons/atom. For BeB₂, CaB₂, and SrB₂ we have made the structural optimization with a similar procedure.

C. Computational details for the TB-LMTO calculations

To calculate the electronic ground state properties of MgB₄, MgB₂C₂, and LiBC we used the TB-LMTO method of Andersen.⁴⁶ The von Barth-Hedin parametrization is used for the exchange correlation potential within the localdensity approximation. In the present calculation, we used atomic sphere approximation. The calculations are semirelativistic, i.e., without spin-orbit coupling, all other relativistic effects are included, also taking into account combined correction terms. BZ k-point integrations are made using the tetrahedron method on a grid of 405 (MgB₄), 365 (MgB₂C₂) and 549 (LiBC) k points in the irreducible part of BZ. In order to have more insight into the chemical bonding, we have also evaluated the crystal orbital Hamiltonian population (COHP)^{47,48} in addition to the regular band-structure calculations. COHP is DOS weighted by the corresponding Hamiltonial matrix elements, a positive sign of which indicates bonding character and negative antibonding character.

D. Computational details of FPLMTO calculations

The full-potential LMTO⁴⁹ calculations presented in this paper are all electron, and no shape approximation to the charge density or potential has been used. The base geometry in this computational method consists of muffin-tin and interstitial parts. The basis set is comprised of augmented linear muffin-tin orbitals.⁵⁰ Inside the muffin-tin spheres the basis functions, charge density, and potential are expanded in symmetry adapted spherical harmonic functions together with a radial function. Fourier series are used in the interstitial regions. In the present calculations the spherical harmonic expansion of the charge density, potential, and ba-

sis functions was carried out up to $\ell = 6$. The tails of the basis functions outside their parent spheres are linear combinations of Hankel or Neumann functions depending on the sign of the kinetic energy of the basis function in the interstitial regions. For the core-charge density, the Dirac equation is solved self-consistently, i.e., no frozen core approximation is used. The calculations are based on the generalized-gradient-corrected-density-functional theory as proposed by Perdew, Burke, and Ernzerhof.⁴⁵ SO terms are included directly in the Hamiltonian matrix elements for the part inside the muffin-tin spheres. Moreover, the present calculations make use of a so-called multibasis, to ensure a well-converged wave function. This means that we use different Hankel or Neuman functions each attaching to its own radial function. This is important to obtain a reliable description of the higher lying unoccupied states, especially for the optical property studies. For our elastic properties study we have used 192 k points and for the optical property studies 624 k points in the irreducible part of BZ.

E. Calculation of optical properties

Once the energies $\epsilon_{\mathbf{k}n}$ and functions $|\mathbf{k}n\rangle$ for the *n* bands are obtained self consistently, the interband contribution to the imaginary part of the dielectric functions $\epsilon_2(\omega)$ can be calculated by summing the transitions from occupied to unoccupied states (with fixed **k** vector) over BZ, weighted with the appropriate matrix element for the probability of the transition. To be specific, the components of $\epsilon_2(\omega)$ are given by

$$\boldsymbol{\epsilon}_{2}^{ij}(\boldsymbol{\omega}) = \frac{Ve^{2}}{2\pi\hbar m^{2}\boldsymbol{\omega}^{2}} \int d^{3}k \sum_{nn'} \langle \mathbf{k}n | p_{i} | \mathbf{k}n' \rangle \langle \mathbf{k}n' | p_{j} | \mathbf{k}n \rangle$$
$$\times f_{\mathbf{k}n}(1 - f_{\mathbf{k}n'}) \,\delta(\boldsymbol{\epsilon}_{\mathbf{k}n'} - \boldsymbol{\epsilon}_{\mathbf{k}n} - \hbar\,\boldsymbol{\omega}), \tag{1}$$

where $(p_x, p_y, p_z) = \mathbf{p}$ is the momentum operator and $f_{\mathbf{k}n}$ is the Fermi distribution. The evaluation of matrix elements in Eq. (1) is done over the muffin-tin and interstitial regions separately. Further details about the evaluation of matrix elements are given elsewhere.⁵¹ For the hexagonal structure of MgB₂ the dielectric function is a tensor. By an appropriate choice of the principal axes we can diagonalize it and restrict our consideration to the diagonal matrix elements. We have calculated the two components $E \parallel a$ and $E \parallel c$ of the dielectric constants corresponding to the electric field parallel to the crystallographic axes a and c, respectively. These calculations yield the unbroadened functions. To reproduce the experimental conditions correctly, it is necessary to broaden the calculated spectra. The exact form of the broadening function is unknown, although comparison with measurements suggests that the broadening usually increases with increasing excitation energy. Also the instrumental resolution smears out many fine features. To simulate these effects the lifetime broadening was simulated by convoluting the absorptive part of the dielectric function with a Lorentzian, whose full width at half maximum (FWHM) is equal to $0.01(\hbar\omega)^2$. The experimental resolution was simulated by broadening the final spectra with a Gaussian, where FWHM is equal to 0.02 eV. For metals, the intraband contribution to the optical dielectric tensor influences the lower-energy part of the spectra. This has been calculated using the screened plasma frequency obtained from Fermi surface integration according to the description in Ref. 52.

F. Calculation of elastic properties

For the single-crystal elastic constant calculations we have adopted the same approach we used earlier⁵³ for orthorhombic TiSi₂. The hexagonal phase of MgB₂ has two lattice parameters a and c with Bravais lattice vectors in matrix form

$$\mathbf{R} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{-1}{2} & 0\\ 0 & 1 & 0\\ 0 & 0 & \frac{c}{a} \end{pmatrix}.$$

The FPLMTO⁴⁹ method allows total-energy calculations to be done for arbitrary crystal structures. We can therefore apply small strains to the equilibrium lattice, then determine the resulting change in the total energy, and from this information deduce the elastic constants. The elastic constants are identified as proportional to the second-order coefficient in a polynomial fit of the total energy as a function of the distortion parameter δ .⁵⁴ We determine linear combinations of the elastic constants by straining the lattice vectors **R** according to the relation $\mathbf{R}' = \mathbf{R}\mathbf{D}$. Here \mathbf{R}' is a matrix containing the components of the distorted lattice vectors and **D** the symmetric distortion matrix, which contains the strain components. We shall consider only small lattice distortions in order to remain within the elastic limit of the crystal. In the following we shall briefly list the relevant formulae used to obtain the elastic constants for hexagonal crystals. The internal energy of a crystal under strain, δ , can be Taylor expanded in powers of the strain tensor with respect to the initial internal energy of the unstrained crystal in the following way:

$$E(V,\delta) = E(V_0,0) + V_0 \left(\sum_i \tau_i \xi_i \delta_i + 1/2 \sum_{ij} c_{ij} \delta_i \xi_i \delta_j \xi_j\right) + O(\delta^3).$$
(2)

The volume of the unstrained system is denoted V_0 , $E(V_0,0)$ being the corresponding total energy. In Eq. (2), τ_i is an element in the stress tensor.

Since we have five independent elastic constants, we need five different strains to determine them. The five distortions used in the present investigation are described in the following. The first distortion

$$D_1 \!=\! \left(\begin{array}{ccc} 1\!+\!\delta & 0 & 0 \\ 0 & 1\!+\!\delta & 0 \\ 0 & 0 & 1\!+\!\delta \end{array} \right)$$

gives compression or expansion to the system. This preserves the symmetry but changes the volume. The strain energy associated with this distortion is

$$E(V,\delta) = E(V_0,0) + V_0[(\tau_1 + \tau_2 + \tau_3)\delta + \frac{1}{2}(2c_{11} + 2c_{12} + 4c_{13} + c_{33})\delta^2].$$

The second distortion

$$D_2 = \begin{pmatrix} (1+\delta)^{-1/3} & 0 & 0\\ 0 & (1+\delta)^{-1/3} & 0\\ 0 & 0 & (1+\delta)^{2/3} \end{pmatrix}$$

gives the volume- and symmetry-conserving variation of c/a. The energy associated with this distortion is

$$E(V, \delta) = E(V_0, 0) + V_0[(\tau_1 + \tau_2 + \tau_3)\delta + \frac{1}{9}(c_{11} + c_{12} - 4c_{13} + 2c_{33})\delta^2].$$

The strain matrix

$$D_{3} = \begin{pmatrix} \frac{1+\delta}{(1-\delta^{2})^{1/3}} & 0 & 0 \\ 0 & \frac{1-\delta}{(1-\delta^{2})^{1/3}} & 0 \\ 0 & 0 & \frac{1}{(1-\delta^{2})^{1/3}} \end{pmatrix}$$

distorts the basal plane by elongation along a and compression along b in such a way that the volume is conserved. The energy associated with this distortion is

$$E(V, \delta) = E(V_0, 0) + V_0[(\tau_1 - \tau_2)\delta + (c_{11} - c_{12})\delta^2].$$

The elastic constant c_{55} can be determined by the distortion of the lattice using the volume-conserving triclinic distortion

$$D_4 = \begin{pmatrix} \frac{1}{(1-\delta^2)^{1/3}} & 0 & \frac{\delta}{(1-\delta^2)^{1/3}} \\ 0 & \frac{1}{(1-\delta^2)^{1/3}} & 0 \\ \frac{\delta}{(1-\delta^2)^{1/3}} & 0 & \frac{1}{(1-\delta^2)^{1/3}} \end{pmatrix}.$$

The energy change associated with this distortion is

$$E(V, \delta) = E(V_0, 0) + V_0[\tau_5 \delta + (2c_{55})\delta^2].$$

The fifth strain

$$D_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 + \delta \end{pmatrix}$$

involves stretching of the c axis while keeping other axes unchanged. Hence, the hexagonal symmetry is preserved, but volume is changed. The energy change associated with this strain can be written as

$$E(V,\delta) = E(V_0,0) + V_0 \left[\tau_3 \delta + \left(\frac{c_{33}}{2} \right) \delta^2 \right]$$

The elastic constant c_{33} can be directly obtained from the above-mentioned relation. By solving the linear equations given previously we have obtained all five elastic constants. From pressure-dependent lattice parameter measurements it is easy to obtain the bulk modulus along the crystallographic axes. Also to quantify the mechanical anisotropy of MgB₂ it is important to calculate the bulk modulus along the axes. For hexagonal crystals the bulk modulus along a (B_a) and c (B_c) are defined as

$$B_a = a \frac{dP}{da} = \frac{\Lambda}{2+\alpha}$$

and

$$B_c = c \frac{dP}{dc} = \frac{B_a}{\alpha},$$

where $\Lambda = 2(c_{11}+c_{12})+4c_{13}\alpha+c_{33}\alpha^2$ and

$$\alpha = \frac{c_{11} + c_{12} - 2c_{13}}{c_{33} - c_{13}}.$$

The calculated bulk modulus along the crystallographic axes obtained from these relations are compared with the experimental results in Sec. III.

III. RESULTS AND DISCUSSION

A. Electronic structure

An interesting feature of the calculated electronic band structure of MgB₂ is that doubly degenerate, nearly flat bands are present just above E_F in the Γ -A direction (Fig. 2) and cut E_F along the $K-\Gamma$ direction. These bands give rise to nearly cylindrical, hole-like Fermi surfaces around the Γ point,⁴ indicating that the transport properties are dominated by the hole carriers in the plane where B atoms exist. These bands are incompletely filled bonding σ bands with predominantly boron p_x, p_y character. The p_z bands (mainly in the unoccupied state and with finite contribution along the $M-\Gamma$ direction of VB in Fig. 2) are derived from the intralayer π bonding orbitals which also have interlayer couplings between adjacent atomic orbitals in the c direction. Our earlier study⁵⁵ on superconducting La₃X (X=Al,Ga, In, Tl) compounds show that the presence of a flat band in the vicinity of E_F gives large T_c . The flat-band feature is also present in the recently discovered superconducting compound

FIG. 2. Band structure of MgB_2 and hypothetical B_2 in the AlB_2 -type framework. For the B_2 substructure we have used the lattice parameters of MgB_2 .

YNi₂B₂C. As a working hypothesis, we suggest that this flatband feature plays an important role for the superconductivity in MgB₂. The calculated²¹ electron-phonon interaction strength also shows a large value in the Γ -A direction where the flat-band feature is seen. Moreover, zone boundary phonon calculations show that this band feature is very sensitive to the E_{2g} mode (B-bond stretching). The top of this flatband feature is around 0.54 eV above E_F . Assuming rigidband filling the addition of ~ 0.32 electron to MgB₂ will bring E_F to the top of this energy band. Thus, if electrons are responsible for the superconductivity one can expect enhancement of T_c on electron doping. The electron doping¹⁶ in Mg_{1-x}Al_xB₂ leads to a smooth drop in T_c up to x=0.1and beyond x = 0.25 the superconductivity is completely destroyed. This indicates that holes are responsible for the superconductivity in MgB₂, an observation consistent with Hall effect measurements.

The role of Mg on the band structure of MgB₂ can be elucidated by completely removing the Mg atoms from the lattice and repeating the calculations for a hypothetical structure with only B atoms (note: using the lattice parameters for MgB₂). The calculated electronic structure for the B network alone is given in Fig. 2 along with that of MgB₂. The striking difference between the two cases is in the position of the flat band in the Γ -A direction. This flat-band feature for the B network alone is strongly two dimensional (viz. very little dispersion along Γ -A). This is ~1.8 eV above E_F owing to the smaller number of electrons in the B network compared with MgB₂. This suggests that the B–B σ bonds are primarily responsible for the superconductivity in MgB₂. Interestingly the bands are not deformed appreciably when we remove Mg from MgB₂ indicating that the electrons from Mg atoms mainly give a shift in E_F almost like rigid-band filling. This viewpoint is confirmed also from the density of states (Fig. 3), which shows that the topology of the DOS profile with and without Mg atoms in MgB₂ are almost the same. But a shift in DOS is observed when Mg is removed from MgB_2 .

 BeB_2 could be expected to have a higher T_c owing to the lighter Be atoms which may provide larger phonon frequencies while maintaining a similar electronic structure to that of

 MgB_2 . Even though BeB_2 is isoelectronic with MgB_2 , a recent experimental study³⁶ did not reveal any sign of superconductivity down to 5 K. This negative finding makes it interesting to investigate the electronic structure of BeB_2 in detail. The lattice constants for BeB_2 obtained⁵⁶ by averag-

FIG. 3. Lower panel: Total and site-projected DOS for MgB_2 and hypothetical B_2 obtained from the FPLMTO method. Middle panel: Angular momentum- and orbital-projected DOS for MgB_2 obtained from the FPLAPW method. Upper panel: Crystal overlap Hamiltonian population (COHP) between Mg–Mg, Mg–B, and B–B obtained from the TBLMTO method.

TABLE I. Calculated lattice parameters (*a* and *c* are in Å), c/a ratio, bulk modulus (B_0 in Mbar), its pressure derivative (B'_0), and density of states at the Fermi level [$N(E_F)$ in states Ry⁻¹ f.u.⁻¹] for AlB₂-type compounds.

Compound	а	С	c/a	B_0	B_0'	$N(E_F)$
BeB ₂	2.886	3.088	1.027	1.93	3.47	6.309
MgB_2	3.080	3.532	1.147	1.50 3.50		9.98
				1.20 ± 0.05^{a}		
				1.51 ^b		
				1.39 ^c		
				1.47 ^d		
				1.40 ± 0.06^{e}		
CaB ₂	3.397	4.019	1.183	1.34	3.42	10.837
SrB ₂	3.456	4.193	1.213	1.05	2.28	4.732
TiB ₂	3.070	3.262	1.060	2.13	2.10	4.27

^aFrom synchrotron XRD by Prassides *et al.* (Ref. 34).

^bHigh-pressure XRD measurement by Vogt *et al.* (Ref. 33).

^cCalculated from FPLAPW method by Vogt et al. (Ref. 33).

^dCalculated from pseudopotential method by Bohnen *et al.* (Ref. 84).

^eCalculated from FPLAPW method by Lao and Syassen (Ref. 32).

ing experimental data for the actual unit cell have been inferred to be a = 2.94 and c = 2.87 Å. There are no experimental lattice parameters available for BeB2 with the AlB₂-type structure and hence we have made structural optimization using the FPLAPW method. Table I shows that a would be reduced by about 6.5%, and c by about 12.5%when Mg is replaced by Be. The anisotropic changes of the lattice parameters can be understood from the anisotropic bonding situation in MgB₂. It looks as if the strong B (p-p) σ bonds within the planes prevent more appreciable changes in a whereas the weaker π bonds along with the relatively weak ionic bonding between Be and B bring about a larger change in c. Consistent with the earlier calculation⁵⁷ our value of DOS at E_F for BeB₂ is smaller than that of MgB₂. Owing to the smaller volume our calculated bulk modulus for BeB_2 becomes larger than that of MgB_2 (Table I).

The total DOS curve for BeB₂ (Fig. 4) shows almost freeelectron-like metallic feature, with an $N(E_F)$ value of 6.309 state Ry^{-1} f.u.⁻¹, which in turn is consistent with the paramagnetic behavior observed experimentally. The DOS curves of BeB2 and MgB2 are indeed very similar as expected due to their isoelectronic and postulated isostructural nature. As mentioned previously, the DOS features could lead one to a higher T_c for BeB₂ than for MgB₂. A closer inspection of the band structure (Fig. 5) indicates that the key energy band, which we believe to be responsible for superconductivity, is broader in BeB₂ than in MgB₂ and it is also located well above E_F . Hence the calculations suggest that even if one could stabilize BeB₂ in the AlB₂-type structure one should not expect superconductivity. This conclusion is consistent with the experimental observation in the sense that a recent study³⁶ shows paramagnetic behavior down to 5 K.

Kortus *et al.*⁴ suggested that Ca doping should lead to an overall increase in DOS, and also provide an additional contribution to the electron–phonon coupling. We have therefore

FIG. 4. Calculated total DOS for BeB_2 , CaB_2 , and SrB_2 obtained from the FPLAPW method and that for MgB_4 , LiBC, and MgB_2C_2 obtained from the TBLMTO method. For BeB_2 , CaB_2 , and SrB_2 we have assumed the AlB_2 -type structure and optimized the structural parameters.

calculated DOS (using the optimized structural parameters) for CaB₂ which shows (Fig. 4) sharp features like those found in transition metal phases resulting from enhancement in volume compared with MgB₂. Also, the calculated DOS at E_F is larger than that of MgB₂ indicating a possibility for superconductivity. The larger volume compared with BeB₂ and MgB₂ along with the weak B–B interaction make the bulk modulus for this material become smaller. The electronic structure of CaB₂ (Fig. 5) shows that the key energy band is broader than that in MgB₂. Also this doubly degenerate band is well below E_F at the Γ point and well above E_F at the A point. Hence, the calculations suggest that the probability for superconductivity in CaB₂ with AlB₂-type structure is low.

The total DOS for SrB_2 (Fig. 4) predicts a pseudogap feature at E_F (separating bonding from antibonding states with a negligible DOS at E_F). The electronic structure of SrB_2 (Fig. 5) shows nearly semimetallic feature. Earlier studies^{58,59} indicate that materials with E_F located at a pseudogap in DOS will have relatively high stability (the situation with all bonding orbitals filled and all antibonding orbitals empty implies extra contribution to stability). Hence the calculations predict that SrB_2 with AlB₂-type structure may be stabilized experimentally if the above-mentioned criterion works. However, materials with E_F located in the pseudogap are not expected to become superconducting⁵⁵ and hence the present finding suggests that SrB_2 should be nonsuperconducting. Compared to BeB₂ and MgB₂, the top

of VB in CaB_2 and SrB_2 have large nonbonding B *p* states (Fig. 4). This will give a negative contribution to the oneelectron eigenvalue sum for stability. This may be the reason why CaB_2 and SrB_2 are not stabilized in the AlB₂-type structure.

The number of valence electrons per B,C is same for LiBC and MgB₂. So, if electron per atom ratio is the decisive factor for the superconducting behavior of MgB₂ one can expect superconductivity for LiBC. Hence, we have also performed electronic band-structure studies for LiBC. The calculated DOS (Fig. 4) predicts insulating behavior with a band gap of 1.81 eV. LiBC is an indirect band-gap insulator where the band gap is between the top of VB in the Γ -*K* direction and the bottom of CB at the *M* point (Fig. 6). The establishment of insulating behavior is consistent with the experimental observation⁴² of a very small conductivity for LiBC. The flat-band feature present in the *K*-*M* and Γ -*A* directions of BZ just below E_F around -0.23 eV (Fig. 6) suggests that LiBC may be tuned to become superconducting upon hole doping.

The calculated total DOS (Fig. 4) for MgB₂C₂ also shows insulating behavior (which has the same number of valence electrons per nonmetal atom as MgB₂) with band gap of 1.04 eV. This is further confirmed by the band structure (Fig. 6), which shows indirect band-gap insulating features between the topmost valence band in the $Y-\Gamma$ direction and the bottom-most conduction band at the Γ point. The interesting aspect of Fig. 6 is that there is a flat band present in the vicinity of E_F (around the $\Gamma-Z$ and T-Y directions) similar

FIG. 5. The band structure of BeB_2 , CaB_2 , and SrB_2 with AlB_2 -type structure as obtained using the optimized lattice parameters.

to that in MgB₂ and superconducting transition-metal borocarbides (e.g., YNi₂B₂C, LuNi₂B₂C). Consequently we suggest superconductivity with relatively high T_c for hole doped MgB₂C₂. A more detailed analysis of the band structure shows that the narrow band in the T-Y direction near E_F is stemming from the C p_z electrons. Except for the structural data⁴¹ no other information on the physical properties of MgB₂C₂ is available experimentally.

If it is the boron layers that are responsible for the superconductivity, one could expect superconductivity in MgB_4 . However, the calculated total DOS for MgB_4 shows (Fig. 4) only features which point toward insulating behavior and hence superconductivity is not expected for this material.

B. EFG and NMR frequency

From the FPLAPW calculations we have estimated the electric field gradient (V_{zz}) at the Mg and B sites as -0.249×10^{21} and 2.047×10^{21} V/m², respectively. Using the calculated V_{zz} along with the nuclear quadrupole moment for ¹¹B (0.037 b) (Ref. 60) we can calculate the NMR quadrupole coupling frequency (v_a) by means of the relation

$$\nu_q = \frac{3eQV_{zz}}{2hI(2I-1)}$$

using I=3/2 as the nuclear spin quantum number for ¹¹B. This gave $\nu_q=915$ kHz in good agreement with 828 kHz

FIG. 6. The band structure of LiBC and MgB_2C_2 as obtained with the TBLMTO method using experimental lattice parameters.

obtained by Gerashenko *et al.*¹³ and 835 ± 5 kHz obtained by Jung *et al.*¹⁴ from first-order quadrupole perturbed NMR spectra.

C. Chemical bonding in MgB₂

Similar to the C–C distances in the graphite structure, the distance between the boron planes in MgB₂ is about twice the intraplanar B-B distance and hence the B-B bonding is strongly anisotropic. A more quantitative assessment of the bonding situation in MgB₂ can be obtained from the partial DOS (Fig. 3), which demonstrates that the B s states are hybridized with the B p state in VB. This shows strongly bonded sp^2 hybrids in the *ab* plane. The Mg *s* electrons contribute very little to VB and are mainly reflected in the unoccupied state. Hence Mg donates electrons to the boron layers. The B 2s electrons are well localized and their contribution at E_F is minor. From the orbital projected DOS (Fig. 3) it is clear that B p_x and p_y characters are mainly dominating at E_F . This suggests that the $p-p \sigma$ bonding between the boron atoms has a significant influence on superconductivity. It is worth recalling that the recently found²⁸ superconductor Na_{0.29}HfNCl ($T_c \approx 25$ K) has N p_x and p_y characters at E_F .⁶¹ B p_z states are present in a wide energy range and dominate at the bottom of the conduction band.

The simplest way to investigate the bonding situation between two interacting atoms in a solid is to inspect the complete COHP between them, taking all valence orbitals into account. The upper panel of Fig. 3 shows COHP for the B–B and Mg–B bonds. An interesting aspect of this illustration is that VB is filled up with bonding orbitals (negative value of COHP) and the antibonding orbitals are some ~ 3 eV above E_F . Bonding-state electrons from both B–B and Mg–B bonds are found at E_F . The B *s*–*s* bonding states are found mainly at the bottom of VB around -8.5 eV. The B $p-p \sigma$ bonding states dominate at the top of the VB region around -2 eV. Note that the COHP values for the Mg–B bonds are much smaller than for the B–B bonds indicating that the B–B bond is much stronger than the Mg–B bonds consistent with the derived elastic properties (Sec. III D).

The charge-density plot for MgB_2 in the (110) plane (Fig. 7) shows a low electron accumulation between Mg and B as well as a very low electron population at the Mg site (much lower than for a neutral Mg atom). These findings are a clear indication of ionic bonding between Mg and B. The large electron accumulation between the B atoms and their strongly aspherical character indicates strong covalent interaction of partial DOS and COHP. The more or less homogeneous charge distribution between the Mg atoms suggest an appreciable degree of metallic bonding between them, i.e., apart from strong ionic and covalent bonding in MgB₂ the band structure shows features similar to the *s*-*p* metals. Hence, MgB₂ is a typical example of a mixed bonded solid.

D. Elastic properties

Structural parameters for BeB_2 , CaB_2 , and SrB_2 are not available experimentally and we have therefore made struc-

FIG. 7. Valence-charge density in the (110) plane for MgB₂. Corner atoms are Mg and the others are B. Both plots have 35 contours between 0 and 0.25 electrons/a.u.³

tural optimization for these diborides along with MgB₂ by total energy minimization. The optimized structural parameters along with the bulk modulus, its pressure derivative, and $N(E_F)$ are given in Table I. The calculated equilibrium volume for MgB₂ is found to be in excellent agreement with the experimental value,⁴⁰ and the corresponding c/a value is only 0.42% smaller than the experimental value. These results indicate that density-functional theory works well for this material. The calculated $N(E_F)$ value for MgB₂ is larger than that for the other diborides considered in the present study and this may be one of the reasons for the superconductivity in MgB₂.

By fitting the total-energy versus volume curve to the universal equation of state we have obtained the bulk modulus (B_0) and its pressure derivative (B'_0) as 1.50 Mbar and 3.47, respectively. The derived B_0 is found to be in excellent agreement with the value 1.51 Mbar obtained from high-resolution x-ray powder diffraction measurements³³ and also in good agreement with other results listed in Table I. Furthermore $B_0=1.5$ Mbar obtained in this way is in good agreement with the value 1.509 Mbar estimated from the calculated single-crystal elastic constants by means of the relation

$$B = \frac{2(c_{11}+c_{12})+4c_{13}+c_{33}}{9}.$$

The electron per atom ratio of TiB_2 is same as that of MgB_2 and hence this material should also be considered. In TiB_2

Compound	<i>c</i> ₁₁	<i>c</i> ₁₂	<i>c</i> ₁₃	c ₃₃	c ₄₄	B _a	B _c
MgB ₂	4.380	0.430	0.329	2.640	0.802	5.406 4.1±0.2 ^a 6.25 ^b	3.006 2.92 ± 0.12 3.33
ΓiB ₂ (expt) ^c	6.6	0.48	0.93	4.32	2.6	8.512	5.527

TABLE II. The single-crystal elastic constants (c_{ij} in Mbar) and bulk modulus values along a and c (B_a and B_c in Mbar).

^aFrom synchrotron XRD by Prassides et al. (Ref. 34).

^bFrom hydrostatic high-pressure synchrotron XRD by Goncharov et al. (Ref. 63).

^cDerived from the single-crystal elastic constants of Spoor et al. (Ref. 62).

 E_F is located in a pseudogap and hence $N(E_F)$ is small resulting in nonobservation of superconductivity. The calculated bulk modulus for TiB₂ is larger than that for diborides considered in the present study. This is an effect of the filling of the bonding states in the bands and this aspect has been discussed in Ref. 59.

From various distortions we have calculated all five single-crystal elastic constants for MgB₂ (Table II). Unfortunately there are no experimental elastic constants available since a suitable single crystal of MgB₂ has so far not been obtained. We have therefore made comparison with the experimental 62 data for TiB₂. Despite the layered crystal structure of MgB₂ the high-pressure total-energy studies of Loa and Syassen³² suggested isotropic compressibility and concluded that the intra- and interlayer bonding are of similar strength. Another high-pressure study (up to 8 GPa) by Vogt et al.³³ concluded that there are small anisotropies in the mechanical properties. The isothermal compressibility measurements of MgB₂ by synchrotron x-ray diffraction revealed³⁴ a stiff tightly packed incompressible nature with only moderate anisotropy between intra- and interlayer bonds. The neutron diffraction measurements by Jorgensen et al.35 at high pressures concluded with highly anisotropic mechanical properties for MgB₂. As the experimental results are mutually inconsistent, theoretical studies of the compressibility may be helpful in resolving the ambiguities.

From the calculated single-crystal elastic constants we have derived the bulk moduli along the crystallographic directions using the relations given in Sec. II and the results are listed in Table II. The compressibility study³⁴ by synchrotron

radiation show isothermal interlayer compressibility, $d \ln c/dP$ at zero pressure is 1.4 times the in-plane compressibility, $d \ln a/dP$. However, the high-pressure neutron diffraction studies³⁵ show that $d \ln c/dP = 1.64 d \ln a/dP$, which is much closer to our calculated relationship $d \ln c/dP$ =1.79 $d \ln a/dP$ (Table II). The most recent high-pressure measurement⁶³ with hydrostatic pressures up to 15 GPa shows a larger anisotropy $d \ln c/dP = 1.875 d \ln a/dP$. The larger compressibility along c than along a can be understood as follows. There is strong B $p_x, p_y - p_x, p_y$ covalent hybridization along a in MgB₂ and hence the bulk modulus along a(b) is large. There is significant ionic contribution to the bonding between Mg and B along c. Usually an ionic bond is weaker than a covalent bond and hence the bulk modulus is smaller along c than along a. The large anisotropy in the compressibility is also consistent with the fact³⁵ that the thermal expansion along c is about twice that along a. Moreover, substitution¹⁶ of Al for Mg decreases c at a rate approximately twice that of a indicating the anisotropic nature of the bonding.

It is possible to visualize the anisotropy in the elastic properties from the curvature of the total energy with respect to length changes in an arbitrary direction. From the elastic compliance constants (s_{ij}) it is possible to derive the directional bulk modulus *K*, using the relation:⁶⁴

 $\frac{1}{K} = (s_{11} + s_{12} + s_{13}) - (s_{11} + s_{12} - s_{13} - s_{33})l_3^2, \qquad (3)$

FIG. 8. Calculated directional-dependent (a) bulk, (b) Young's, (c) shear moduli, and (d) the characteristic temperature θ_D for MgB₂ as obtained from the calculated single-crystal elastic constants.

TABLE III. Average shear modulus (G_{av} in Mbar), longitudinal and transverse elastic wave velocity (ν_l , ν_k in m/s), and Debye temperature (θ_D in K) obtained from single-crystal elastic constant.

Compound	G_{av}	$ u_l$	ν_m	θ_D (calc)	θ_D (expt)
MgB ₂	1.146	10 612	7276	1016	750 ± 30^{a} 746^{b} 800^{c} 920^{d}
TiB ₂ (expt) ^e	2.407	7 061	5105	743	

^aFrom specific heat measurements by Bud'ko et al. (Ref. 10).

^bFrom specific heat measurements by Wälti et al. (Ref. 79).

^cFrom specific heat measurements by Kremer et al. (Ref. 85).

^dFrom specific heat measurements by Wang et al. (Ref. 86).

^eDerived from the single-crystal elastic constants of Spoor et al. (Ref. 62).

where l_3 is the direction cosine. The thus obtained directional-dependent bulk modulus is shown in Fig. 8(a). A useful surface construction is one that shows the directional dependence of Young's modulus (*E*), which for hexagonal symmetry can be defined as

$$\frac{1}{E} = (1 - l_3^2)^2 s_{11} + l_3^4 s_{33} + l_3^2 (1 - l_3^2) (2s_{13} + s_{44}).$$
(4)

The thus derived directional-dependent Young's modulus [Fig. 8(b)] also shows large anisotropy, *E*, along *a* being about 65% larger than along *c*. The anisotropic nature of the bonding behavior reflected in the elastic properties is consistent with the charge density analysis. The marked anisotropic compressibility of MgB₂ will lead to different pressure effects on different phonon modes and is also more likely to lead to pressure-induced changes in the electronic structure at E_F . This information is valuable in testing the predictions of competing models^{5,11} for the mechanism of superconductivity.

The anisotropy in the plastic properties of materials can be studied from the directional-dependent shear stress and the amount of shear.⁶⁵ So, it is interesting to study the directional dependence of the shear in MgB₂. We have calculated the directional-dependent shear modulus (*G*) from the elastic constants using the relation

$$\frac{1}{G} = s_{44} + \left(s_{11} - s_{12} - \frac{s_{44}}{2}\right)(1 - l_3^2) + 2(s_{11} + s_{33} - 2s_{13} - s_{44}) \times (1 - l_3^2)l_3^2.$$
(5)

The directional-dependent shear modulus [Fig. 8(c)] also shows large anisotropy and *G* along the *a* axis is around 42% higher than that along *c*. It should be noted that large shear value is present in between the basal plane and perpendicular to it. From the calculated directional-dependent bulk modulus and the shear modulus one can calculate the directional dependence of sound velocity and hence the characteristic temperature of the material. The calculated characteristic temperature given in Fig. 8(d) shows an anisotropic nature due to the anisotropy in the bonding behavior. The calculated average shear modulus (G_{av}), elastic-wave velocities (ν), and θ_D obtained from our single-crystal elastic constants are listed in Table III. The calculated value of θ_D is comparable with the experimental values obtained from specific heat measurements (Table III). The higher value of θ_D indicates the presence of higher phonon frequencies in this material. The existence of phonon modes at very high energies (97 meV in MgB₂) is experimentally identified by neutroninelastic-scattering measurements.^{15,66}

E. Optical properties

Optical properties studies are of fundamental importance, since these involve not only the occupied and unoccupied parts of the electronic structure, but also carry information on the character of the bands. In order to elucidate the anisotropy in the optical properties of MgB₂ the calculated imaginary parts of dielectric tensor for E||a| and E||c| ob-

FIG. 9. The calculated optical-dielectric tensor for MgB_2 obtained from (a) with and (b) without intraband contribution obtained from the FPLMTO calculation.

tained from FLMTO method are shown in Fig. 9. The important feature conveyed by the interband transition shown in Fig. 9 is that there is negligible contribution to $\epsilon_2(\omega)$ in $E \parallel c$ below 3.8 eV. The interesting aspect for MgB₂ is that even though the interband contribution to the optical spectra is highly anisotropic the calculated intraband contribution show nearly isotropic behavior. This originates from the close values of the calculated plasma frequencies; 7.13 and 6.72 eV for in-plane and perpendicular-to-plane, respectively. These values are in excellent agreement with $\omega_{p,x}$ = 7.02 eV and $\omega_{p_1 z}$ = 6.68 eV obtained by full-potential LMTO calculation.²¹ The intraband contribution to the optical dielectric tensor have been calculated similar to Ref. 52. The calculated $\epsilon_2(\omega)$ spectra which include both inter- and intraband contributions are shown in the upper panel of Fig. 9. From these $\epsilon_2(\omega)$ spectra one can derive all linear optical properties. Unfortunately, there are no experimental spectra available for MgB₂.

F. Superconductivity aspects

Let us first look for similarities between MgB₂ and other superconducting materials. There are correlations that exist^{67,68} between average electronegativity (η) and superconducting transition temperature in that the η value is between 1.3 and 1.9 for conventional superconductors and 2.43 to 2.68 for high- T_c cuprates. The η value for MgB₂ is 1.733, which places this material in the category of the conventional superconductors. However, using the proposed correlation⁶⁹ between superconducting transition temperature and the value of the electronic specific heat coefficient (γ) for various superconductors we find that γ for MgB₂ falls in the region of the high- T_c cuprates [viz. MgB₂ has a low value of $N(E_F)$ as well as higher T_c]. In the conventional superconductors (β -W-type) with A₃B composition, the mutually orthogonally permuted linear $\cdots A - A - A \cdots$ chains are believed to be responsible for the superconductivity. In MgB₂, the boron atoms in the zig-zag chains (Fig. 1) are believed to play an important role for the superconducting behavior. For higher T_c superconducting intermetallics Butler⁷⁰ has suggested a rule of togetherness which prescribes that (for a given crystal structure, electron-per-atom ratio and period) the electron-phonon coupling is enhanced when the transition-metal atoms are brought closer together. It is interesting to note that the B atoms are brought close together by the strong covalent bonding in MgB₂. Earlier studies⁷¹ show that β -ZrNCl is a semiconductor with a band gap of ~ 3 eV that upon Li intercalation (electron donation) becomes superconducting with $T_c = 13$ K.²⁸ This similarity is present for MgB_2 also, in that the electron donation from Mg to B_2 leads to superconductivity. Ledbetter⁷² points out that the superconducting transition temperature in high- T_c cuprates increases with increasing Debye temperature (θ_D). The higher T_c in MgB₂ may be associated with the large θ_D in this material and this criterion would place MgB2 together with high- T_c cuprates.

In conventional superconductors, T_c increases with decreasing θ_D , i.e., with lattice softening.⁷² The calculated θ_D for MgB₂ from the elastic constants is (1016 K) exception-

ally large indicating that some novel mechanism is responsible for the higher T_c in MgB₂. Using the concept that temperature-dependent electronic screening arising from narrow bands in the vicinity of E_F causes temperature-dependent phonon-mode frequencies (Fig. 2), one is led to expect that softening of phonon modes does occur to explain the experimentally observed higher T_c . Therefore, experimental temperature-dependent phonon spectra for MgB₂ is required to establish whether the softening of particular phonon modes is responsible for its high T_c .

The superconducting transition temperature for the strongly coupled superconductors according to the McMillan formula⁷³ is

$$T_{c} = \frac{\theta_{D}}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^{*}(1+0.62\lambda)}\right].$$
 (6)

In Eq. (6) large T_c can be obtained when we have large values for θ_D (which MgB₂ has) and the electron-phonon coupling constant λ . The empirical value of the Coulomb coupling constant μ^* for *sp* metals is 0.1. The McMillan-Hopfield expression for λ which enters in the exponent in the expression for T_c is

$$\lambda = \frac{N(E_F) \langle I^2 \rangle}{M \langle \omega^2 \rangle}.$$

Here, $N(E_F)$ is smaller for MgB₂ than for conventional higher- T_c materials, $\langle I^2 \rangle$ is the averaged square of the electron-phonon matrix element, $\langle \omega^2 \rangle$ is the averaged square of the phonon frequency, and M is the mass of the ion involved. If the superconductivity occurs by phonon mediation, higher T_c in MgB₂ can be explained as follows. Selected phonon modes may be strongly coupled to the electronic system and influence the magnitude of T_c to a greater extent than average phonon modes because the average phonon mode $\langle \omega^2 \rangle^{1/2} = 0.69 \theta_D$ is larger in MgB₂ (which will reduce the λ value). Consistent with the above-mentioned viewpoint the lattice-dynamical calculations7,21,74,75 reveal that the in-plane boron phonons near the zone center are highly anharmonic with significant nonlinear contribution to the electron-phonon coupling. If such a situation occurs, the softening of certain phonons in combination with the light mass of the constituents may lower the phonon contribution $(M\langle \omega_{\rm ph}^2 \rangle)$ and in turn enhance the electron–phonon coupling constant and hence T_c . This may explain why MgB₂ possesses higher T_c despite the lower value of $N(E_F)$.

Now we will compare MgB₂ with relevant superconducting materials. Among the other transition metal diborides, superconductivity with T_c =9.5 K has been observed in TaB₂ recently.⁷⁶ Our electronic-structure studies⁵⁹ show that E_F is located at a peak in the DOS profile in TaB₂. This feature along with the large $N(E_F)$ value of 2.92 states/(Ry f.u.) will explain the large T_c in this material. As there are substantial B *p* states at E_F in MgB₂ similar to superconducting RENi₂B₂C, it may be worthwhile to compare these cases. An experimental soft x-ray emission spectroscopy study⁷⁷ on superconducting YNi₂B₂C and nonsuperconducting LaNi₂B₂C along with band-structure calculation⁷⁸ indicate that the superconductivity appears only when broad B pbands are located at E_F . The main difference between the electrons involved in the transport properties of RENi2B2C and MgB₂ is that the former has a remarkable DOS peak at E_F dominated by Ni 3d states with almost equal proportions of all five Ni 3d states and also involves some rare-earth d and B, C s-p admixture whereas MgB₂ does not show any peak feature at E_F . From the accurate analysis of measured⁷⁹ specific heat over a wide temperature range γ for MgB₂ is estimated as 5.5 mJ/mol K². From our calculated $N(E_F)$ value we have derived the electronic contribution to the specific-heat coefficient without electron-phonon mass enhancement yielding a value of 1.73 mJ/mol K². From this value along with the experimental γ_{expt} we have estimated the value of the electron-phonon coupling constant using the relation $\gamma_{expt} = \gamma_{th}(1 + \lambda)$ which gave $\lambda = 2.17$. The large λ value indicates that MgB₂ is a strongly coupled superconductor and the strong coupling as well as the low mass of B can explain the higher T_c in MgB₂.

Using the calculated plasma frequencies in the *ab* plane $(\Omega_{p_x,p_y} = 7.13 \text{ eV})$ and perpendicular to it $(\Omega_{p_z} = 6.72 \text{ eV})$ along with $N(E_F) = 0.71 \text{ states/(eV f.u.)}$ the calculated Fermi velocities (ν_F) using the relation

$$\nu_F = \sqrt{\frac{\Omega_p^2}{4 \, \pi e^2 N(E_F)}}$$

are 5.15×10^7 and 4.85×10^7 cm/s along the *ab* plane and perpendicular to it, respectively. The average Fermi velocity obtained from our calculation is 8.75×10^7 cm/s and this is found to be in good agreement with 8.9×10^7 cm/s obtained by Shulga *et al.*⁸⁰ Using the superconducting gap Δ = $3.53k_BT_c/2=6$ meV we have calculated the coherence length (ξ) and the field penetration depth (Λ)

$$\xi = \frac{\hbar \nu_F}{\pi \Delta} = 301 \text{ Å}, \quad \Lambda = \frac{c}{\Omega_p} = 282 \text{ Å}.$$

The experimental upper critical field, $H_{c2}(T)$, thermodynamic critical field, $H_c(T)$, and critical current, J_c , indicate that MgB₂ is a type-II superconductor.⁸¹

Now we will try to understand the effect of pressure on the superconductivity in MgB₂. Addition of Mg to the boron sublattice gives 15% shortening of the c axis compared to that in graphite.¹¹ This chemical pressure brings the B semimetal to a superconducting state. As the transport properties for MgB₂ come from the holes, it is suggested that the superconductivity may be understood within the formalism developed for high- T_c cuprates.⁵ This predicts a positive pressure coefficient for T_c as a result of the decreasing intraplane B-B distance with increasing pressure. However, T_c is experimentally³¹ found to decrease with pressure at a rate of -1.11 K/GPa. The RVB theory,¹¹ on the other hand, predicts a decrease in T_c with increasing chemical pressure, consistent with the experimental findings.^{31,82,83} Linear response calculations²¹ show that the B-bond stretching modes have unusually strong coupling to electrons close to E_F at the top of the bonding quasi-two-dimensional B σ bonds. Therefore, when the compressibility is larger within the *ab* plane than along *c*, one can expect a large variation in the superconductivity with pressure (because the flat bands with p_x, p_y characters broaden faster by compression). Our calculated elastic property for MgB₂ shows large anisotropy with easy compression along *c*. Hence, the key energy band (which is sensitive to the B-bond stretching) will broaden slowly with pressure and T_c will slowly decrease with increasing pressure, consistent with experimental results.

IV. SUMMARY

The present study shows a common origin between the superconductivity in rare earth transition metal borocarbides and MgB_2 in that there is a flat band present in the vicinity of the Fermi level and also that the B atoms are primarily involved in electron-phonon coupling in these materials. Owing to the lack of single crystals the anisotropy in physical properties of MgB_2 are not studied experimentally. We predicted large anisotropies in the optical and mechanical properties. From detailed electronic-structure studies we have arrived at the following conclusions.

(1) The bonding behavior of MgB_2 has been explained by analyses of site-, angular momentum-, and orbital-projected density of states as well as charge-density and crystaloverlap Hamiltonian population. These analyses establish a mixed-bonding behavior with ionic bonding between Mg and B, covalent bonding between B atoms, and metallic bonding between Mg and Mg like that in *sp* metals.

(2) We identified a large anisotropy in the mechanical properties of MgB_2 from our calculated elastic constants, consistent with the anisotropy in the bonding behavior and high-pressure neutron-diffraction measurements. Consequently, pressure can influence the bands in different directions of BZ in an unusually different manner and hence the physical properties.

(3) Two degenerate flat bands have been identified near E_F in the Γ -A direction of BZ. These degenerate B p_x , p_y bands are considered as the key to the realization of the high superconducting temperature in MgB₂.

(4) The role of Mg in MgB₂ is to donate electrons to the B atoms and hence to shift E_F such that it lies very close to the flat band, the feature which we believe to be important for superconductivity.

(5) We found similarity in the electronic structures of MgB_2 , LiBC, and MgB_2C_2 . Therefore superconductivity is expected in hole doped MgB_2C_2 and LiBC. On the other hand, the electronic structures of BeB_2 , CaB_2 , SrB_2 , and MgB_4 suggest a low probability for superconductivity.

(6) Because of the nearly flat bands in the vicinity of E_F (which will introduce temperature-dependent electronic screening of the phonon-mode frequencies), we expect temperature-dependent phonon-mode softening or large anisotropy in the phonon modes.

(7) The calculated boron NMR frequency is found to be in very good agreement with the experimental studies.

(8) As our calculated Debye temperature for MgB_2 is much larger than for other superconducting intermetallics,

we believe that selected phonon modes can be strongly coupled to the electronic system and thus influence the magnitude of T_c to a greater extent than the average phonon correlations may indicate.

(9) If the rigid-band-filling approximation works and also the electrons are responsible for the superconductivity of MgB₂, our calculation suggests that a doping by 0.32 electrons will enhance T_c . However, the experimental observation of a reduction in T_c by electron doping of MgB₂ indicates that the holes are responsible for the superconductivity.

*Electronic address: ravindran.ponniah@kjemi.uio.no

- ¹J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature (London) **410**, 63 (2001).
- ²J.G. Bednorz and K.A. Müller, Z. Phys. B: Condens. Matter 64, 189 (1986).
- ³L. Gao, Y.Y. Xue, F. Chen, Q. Xiong, R.L. Meng, D. Ramirez, C.W. Chu, J.H. Eggert, and H.K. Mao, Phys. Rev. B **50**, 4260 (1994).
- ⁴J. Kortus, I.I. Mazin, K.D. Belashchenko, A.P. Antropov, and L.L. Boyer, cond-mat/0101446 (unpublished).
- ⁵J.E. Hirsch, cond-mat/0102115 (unpublished).
- ⁶K.D. Belashchenko, M. van Schilfgaarde, and V.P. Antropov, cond-mat/0102290 (unpublished).
- ⁷J.M. An and W.E. Pickett, cond-mat/0102391 (unpublished).
- ⁸W.N. Kang, C.U. Jung, K.H.P. Kim, M.S. Park, S.Y. Lee, H.J. Kim, E.M. Choi, K.H. Kim, M.S. Kim, and S.L. Lee, cond-mat/0102313 (unpublished).
- ⁹A.K. Gangopadhyay, A.J. Schwetz, and J.S. Schilling, Physica C 246, 317 (1995).
- ¹⁰S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson, and P.C. Canfield, Phys. Rev. Lett. 86, 1877 (2001).
- ¹¹G. Baskaran, cond-mat/0103308 (unpublished).
- ¹²H. Kotegawa, K. Ishida, Y. Kitaoka, T. Muranaka, and J. Akimitsu, cond-mat/0102334 (unpublished).
- ¹³A. Gerashenko, K. Mikhalev, S. Verkhovskii, T. D'yachkova, A. Tyntynnik, and V. Zubkov, cond-mat/0102421 (unpublished).
- ¹⁴ J.K. Jung, S.H. Baek, F. Borsa, S.L. Bud'ko, G. Lapertot, and P.C. Canfield, cond-mat/0103040 (unpublished).
- ¹⁵T.J. Sato, K. Shibata, and Y. Takano, cond-mat/0102468 (unpublished).
- ¹⁶J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S. Loureiro, M.K. Haas, H.W. Zandbergen, and R.J. Cava, cond-mat/0102262 (unpublished).
- ¹⁷J.S. Ahn and E.J. Choi, cond-mat/0103169 (unpublished).
- ¹⁸T. Takenobu, T. Ito, D.H. Chi, K. Prassides, and Y. Iwasa, cond-mat/0103241 (unpublished).
- ¹⁹W.N. Kang, C.U. Jung, K.H.P. Kim, M.S. Park, S.Y. Lee, H.J. Kim, E.M. Choi, K.H. Kim, M.S. Kim, and S.I. Lee, cond-mat/0102313 (unpublished).
- ²⁰C. Panagopoulos, B.D. Rainford, T. Xiang, C.A. Scott, M. Kambara, and I.H. Inoue, cond-mat/0103060 (unpublished).
- ²¹Y. Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, cond-mat/0102499 (unpublished).
- ²²R. Nagarajan, C. Mazumdar, Z. Hossain, S.K. Dhar, K.V. Gopalakrishnan, L.C. Gupta, C. Godart, B.D. Padalia, and R. Vijayaraghavan, Phys. Rev. Lett. **72**, 274 (1994).
- ²³R.J. Cava, K. Takaki, B. Batlogg, H.W. Zandbergen, J.J. Krajew-

ACKNOWLEDGMENTS

P.R. is grateful for financial support from the Research Council of Norway. Part of these calculations was carried out on the Norwegian supercomputer facilities (Program for Supercomputing). P.R. wishes to acknowledge Professor O.K. Andersen, Professor Ove Jepsen, Dr. Florent Boucher, Dr. John Wills, Professor K. Schwarz, and Professor Peter Blaha for providing some of the programs used in this study, and Dr. Anna Delin and Dr. Lars Fast for useful communications.

ski, W.F. Peck, Jr., R.B. van Dover, R.J. Felder, T. Siegrist, K. Mizuhahi, J.O. Lee, H. Elsaki, S.A. Carter, and S. Uchida, Nature (London) **367**, 146 (1994); R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, Jr., T. Siegrist, B. Batlogg, R.B. van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, and S. Uchida, *ibid.* **367**, 252 (1994).

- ²⁴R.J. Cava, H.W. Zandbergen, B. Batlogg, H. Eisaki, H. Tagaki, J.J. Krajewski, W.F. Peck, Jr., E.M. Gyorgy, and S. Uchida, Nature (London) **372**, 245 (1994); H.W. Zandbergen, J. Jansen, R.J. Cava, J.J. Krajewski, and W.F. Peck, Jr., *ibid.* **372**, 759 (1994).
- ²⁵A.D. Chinchure, R. Nagarajan, and L.C. Gupta, Physica B 281&282, 894 (2000).
- ²⁶J. C. Philips, *Physics of High-T_c Superconductors* (Academic, New York, 1989).
- ²⁷K. P. Sinha and S. L. Kakani, *Magnetic Superconductors* (Nova Science, Commack, 1989).
- ²⁸S. Yamanaka, H. Kawaji, K. Hotehama, and M. Ohashi, Adv. Mater. 9, 771 (1996); S. Yamanaka, K. Hotehama, and H. Kawaji, Nature (London) 392, 580 (1998).
- ²⁹R.K. Kremer, K. Ahn, R.W. Henn, J.J. Mattausch, W. Schndle, A. Stolovits, and A. Simon, Physica C 317&318, 456 (1999).
- ³⁰S. Sanfilippo, H. Elsinger, M. Nunez-Regueiro, O. Laborde, S. Lefloch, M. Affronte, G.L. Olcese, and A. Palenzona, Phys. Rev. B **61**, R3800 (2000).
- ³¹T. Tomita, J.J. Hamlin, J.S. Shilling, D.G. Hinks, and J.D. Jorgensen, cond-mat/0103538 (unpublished).
- ³²I. Loa and K. Syassen, Solid State Commun. (to be published).
- ³³T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, and J.S. Abell, cond-mat/0102480 (unpublished).
- ³⁴ K. Prassides, Y. Iwasa, T. Ito, D.H. Chi, K. Uehara, E. Nishibori, M. Takata, S. Sakata, Y. Ohishi, O. Shimomura, T. Muranaka, and J. Akimitsus, cond-mat/0102507 (unpublished).
- ³⁵J.D. Jorgensen, D.G. Hinks, and S. Short, cond-mat/0103069 (unpublished).
- ³⁶I. Felner, cond-mat/0102508 (unpublished).
- ³⁷S.M. Kazakov, M. Angst, and J. Karpinski, cond-mat/0103350 (unpublished).
- ³⁸Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M.H. Zhu, Z.H. Han, X.L. Wang, and B.L. Gu, cond-mat/0103077 (unpublished).
- ³⁹N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, and A.J. Freeman, cond-mat/0103157 (unpublished).
- ⁴⁰M.E. Jones and R.E. Marsh, J. Am. Chem. Soc. 76, 1434 (1954).
- ⁴¹M. Wörle and R. Nesper, J. Alloys Compd. **216**, 75 (1994).
- ⁴²M. Wörle, R. Nesper, G. Mair, M. Schwarz, and H.G. von Schnering, Z. Anorg. Allg. Chem. **621**, 1153 (1995).
- ⁴³A. Vegas, L.A. Martinez-Cruz, A. Ramos-Gallardo, and A.

Romero, Z. Kristallogr. 210, 575 (1995).

- ⁴⁴ P. Blaha, K. Schwarz, and J. Luitz, WIEN97, Vienna University of Technology, 1997 [improved and updated Unix version of the original copyrighted WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, and S. B. Trickey, Comput. Phys. Commun. **59**, 399 (1990)].
- ⁴⁵J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- ⁴⁶O.K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
- ⁴⁷R. Dronskowski and P.E. Blochl, J. Phys. Chem. **92**, 5397 (1993).
- ⁴⁸G. Krier, O. Jepsen, A. Burkhardt, and O. K. Andersen, *Tight binding* LMTO-ASA *Program Version* 4.7, Stuttgart, Germany, 1999.
- ⁴⁹J. M. Wills, O. Eriksson, M. Alouani, and D. L. Price, in *Electronic Structure and Physical Properties of Solids*, edited by H. Dreysse (Springer, Berlin, 2000), p. 148; J.M. Wills and B.R. Cooper, Phys. Rev. B **36**, 3809 (1987); D.L. Price and B.R. Cooper, *ibid.* **39**, 4945 (1989).
- ⁵⁰O.K. Andersen, Phys. Rev. B **12**, 3060 (1975).
- ⁵¹M. Alouani and J.M. Wills, Phys. Rev. B **54**, 2480 (1996); R. Ahuja, S. Auluck, J.M. Wills, M. Alouani, B. Johansson, and O. Eriksson, *ibid.* **55**, 4999 (1997).
- ⁵²P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Phys. Rev. B **59**, 1776 (1999).
- ⁵³P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).
- ⁵⁴D. C. Wallace, *Thermodynamics of Crystals* (Wiley, New York, 1972).
- ⁵⁵P. Ravindran and R. Asokamani, J. Phys.: Condens. Matter 7, 1 (1995).
- ⁵⁶I.I. Tupitsyn, I.I. Lyakhovskaya, M.S. Nakhmanson, and A.S. Sukhikh, Sov. Phys. Solid State 16, 2015 (1975).
- ⁵⁷G. Satta, G. Profeta, F. Bernardini, A. Continenza, and S. Massidda, cond-mat/0102358 (unpublished).
- ⁵⁸P. Ravindran, G. Subramoniam, and R. Asokamani, Phys. Rev. B 53, 1129 (1996).
- ⁵⁹P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani, Phys. Rev. B **63**, 045115 (2001).
- ⁶⁰ V. S. Shirley and C. M. Lederer, in *Hyperfine Interactions Studied in Nuclear Reactions and Decay*, edited by E. Karlsson and R. Wäppling (Almqvist and Wiksell International, Stockholm, Sweden, 1975).
- ⁶¹R. Weht, A. Filippetti, and W.E. Pickett, Europhys. Lett. 48, 320 (1999).
- ⁶²P.S. Spoor, J.D. Maynard, M.J. Pan, D.J. Green, J.R. Hellmann, and T. Tanaka, Appl. Phys. Lett. **70**, 1959 (1997).
- ⁶³A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu, R.J. Hemley, H.K. Mao, G. Papertot, S.L. Bud'ko, and P.C. Canfield, cond-mat/0104042 (unpublished).

- ⁶⁴J. F. Nye, *Physical Properties of Crystals* (Oxford University Press, Oxford, 1985).
- ⁶⁵W. Boas and F. K. Mackenzie, in *Progress in Metal Physics*, edited by B. Chamers (Wiley, New York, 1968), Vol. 2, p. 90.
- ⁶⁶R. Osborn, E.A. Goremychkin, A.I. Kolesnikov, and D.G. Hinks, cond-mat/0103064 (unpublished).
- ⁶⁷R. Asokamani and R. Manjula, Phys. Rev. B **39**, 4217 (1989).
- ⁶⁸S. Nishimoto, M. Takahashi, and Y. Ohta, Physica B 281&282, 953 (2000).
- ⁶⁹H. Takaki, R.J. Cava, H. Eisaki, J.O. Lee, K. Mizuhashi, B. Batlogg, S. Uchida, J. Jikrajewski, and W.F. Peck, Jr., Physica C 228, 389 (1994).
- ⁷⁰W. H. Butler, *Treaties on Materials Science and Technology*, edited by F. Y. Fradin (Academic, New York, 1981), Vol. 21, p. 165.
- ⁷¹ M. Ohashi, S. Yamanaka, and M. Hattori, J. Ceram. Soc. Jpn. **97**, 1175 (1989).
- ⁷²H. Ledbetter, Physica C **235-240**, 1325 (1994).
- ⁷³W.L. Mcmillan, Phys. Rev. **167**, 331 (1967).
- ⁷⁴T. Yildirim, O. Gülseren, J.W. Lynn, C.M. Brown, T.J. Udovic, H.Z. Qing, N. Rogado, K.A. Regan, M.A. Hayward, J.S. Slusky, T. He, M.K. Haas, P. Khalifah, K. Inumaru, and R.J. Cava, cond-mat/0103469 (unpublished).
- ⁷⁵A.Y. Liu, I.I. Mazin, and J. Kortus, cond-mat/0103570 (unpublished).
- ⁷⁶D. Kaczorowski, A.J. Zaleski, O.J. Zogal, and J. Klamut, cond-mat/0103571 (unpublished).
- ⁷⁷S. Shin, A. Agui, M. Watanabe, M. Fujisawa, Y. Tazuka, T. Ishii, K. Kobayashi, A. Fujimori, M. Hinomaru, and H. Takagi, Phys. Rev. B **52**, 15 082 (1995).
- ⁷⁸L.M. Mattheiss, T. Siegrist, and R.J. Cava, Solid State Commun. 91, 587 (1994).
- ⁷⁹Ch. Walti, E. Felder, C. Degen, G. Wigger, R. Monnier, B. Delley, and H.R. Ott, cond-mat/0102522 (unpublished).
- ⁸⁰S.V. Shulga, S.L. Drechsler, H. Eschrig, H. Rosner, and W. Pickett, cond-mat/0103154 (unpublished).
- ⁸¹D.K. Finnemore, J.E. Ostenson, S.L. Bud'ko, V.P. Antropov, and L.L. Boyer, cond-mat/0102114 (unpublished).
- ⁸²B. Lorenz, R.L. Meng, and C.W. Chu, cond-mat/0102264 (unpublished).
- ⁸³E. Saito, T. Taknenobu, T. Ito, Y. Iwasa, K. Prassides, and T. Arima, J. Phys.: Condens. Matter **13**, L267 (2001).
- ⁸⁴K.P. Bohnen, R. Heid, and B. Renker, cond-mat/0103319 (unpublished).
- ⁸⁵R.K. Kremer, B.J. Gibson, and K. Ahn, cond-mat/0102432 (unpublished).
- ⁸⁶Y. Wang, T. Plackowski, and A. Junod, cond-mat/0103210 (unpublished).